【题目】如图,在四棱锥中,平面平面,,,,为的中点.
(1)证明:.
(2)求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,函数为奇函数。对任意实数x恒成立.
(1)求函数与;
(2)设,,若对于恒成立,求实数m的取值范围;
(3)对于(2)中的函数,若方程没有实数解,实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为,A,B两点的极坐标分别为.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)点P是圆C上任一点,求△PAB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是, 是的中点.
(1)求证: 平面;
(2)求二面角的大小;
(3)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的奇函数,当时,.
(Ⅰ)求函数在R上的解析式;
(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某建筑工地搭建的脚手架局部类似于一个 的长方体框架,一个建筑工人欲从处沿脚手架攀登至 处,则其最近的行走路线中不连续向上攀登的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数(,),关于的不等式的解集中有且只有一个元素.
(1)设数列的前项和(),求数列的通项公式;
(2)设(),则数列中是否存在不同的三项能组成等比数列?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com