精英家教网 > 高中数学 > 题目详情
12.函数y=2cos2($\frac{x}{2}$-$\frac{π}{4}$),(x∈R)的递减区间是[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z.

分析 利用二倍角的余弦公式化简函数的解析式,再根据正弦函数的单调性求得该函数的递减区间.

解答 解:函数y=2cos2($\frac{x}{2}$-$\frac{π}{4}$)=cos(x-$\frac{π}{2}$)+1=sinx+1,
根据正弦函数的减区间可得该函数的递减区间为[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z,
故答案为:[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z.

点评 本题主要考查二倍角的余弦公式的应用,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,直线l⊥平面α,垂足为O,正四面体(所有棱长都相等的三棱锥)ABCD的棱长为a,C在平面α内,B是直线l上的动点,当点O到AD的距离最大时,直线AD与平面α的距离为$\frac{2+\sqrt{2}}{4}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式|x-2|+|x+3|>a恒成立,则参数a的范围是(  )
A.a≤5B.a<5C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(x+1)+ln(1-x)+a(x+1)(a>0).
(1)当a=1时,求函数f(x)的单调区间;
(2)若f(x)在(-1,0]上的最大值为1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果采用圆外切多边形的周长逐渐逼近圆周长的算法计算圆周率π,其所计算出π的值是(  )
A.精确值B.不足近似值C.过剩近似值D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,AC=2,AA1=3,求:
(1)三棱锥B1-ABC的体积;
(2)求二面角B1-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知三棱锥A-BCD的各棱长均为2,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在半径为$10\sqrt{3}(m)$的半圆形(其中O为圆心)铝皮上截取一块矩形材料ABCD,其中点C、D在圆弧上,点A、B在半圆的直径上,现将此矩形铝皮ABCD卷成一个以BC为母线的圆柱形罐子的侧面(注:不计剪裁和拼接损耗),设矩形的边长BC=x(m),圆柱的侧面积为S(m2)、体积为V(m3),
(1)分别写出圆柱的侧面积S和体积V关于x的函数关系式;
(2)当x为何值时,才能使得圆柱的侧面积S最大?
(3)当x为何值时,才能使圆柱的体积V最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.点(2,-2)的极坐标为$(2\sqrt{2},\frac{7π}{4})$,(2,$\frac{π}{3}$)化成直角坐标为(1,$\sqrt{3}$),点(-1,-1)的极坐标为$(\sqrt{2},\frac{5π}{4})$,(4,$\frac{5π}{6}$)化成直角坐标为$(-2\sqrt{3},2)$.

查看答案和解析>>

同步练习册答案