分析 由题意,直线BC与动点O的位置关系是:点O是以BC为直径的球面上的点,因此O到AD的距离为四面体上以BC为直径的球面上的点到AD的距离,故最大距离为AD到球心的距离(即BC与AD的公垂线)+半径=$\frac{\sqrt{2}}{2}$a+$\frac{1}{2}$a.再考虑取得最大距离时四面体的情况,此时AD⊥平面OBC,OB=OC=$\frac{\sqrt{2}}{2}a$,且AD∥平面α,再利用直角三角形的边角关系即可得出.
解答 解:由题意,直线BC与动点O的位置关系是:点O是以BC为直径的球面上的点,![]()
∴O到AD的距离为四面体上以BC为直径的球面上的点到AD的距离,
因此:最大距离为AD到球心的距离(即BC与AD的公垂线)+半径
=$\frac{\sqrt{2}}{2}$a+$\frac{1}{2}$a;
再考虑取得最大距离时四面体的情况,
此时AD⊥平面OBC,OB=OC=$\frac{\sqrt{2}}{2}a$,且AD∥平面α,
取AD的中点E,则OCEB四点在同一个平面上.
过点E作EF⊥OC,垂足为F,∵平面OCEB⊥α,则EF⊥α.
取BC的中点M,此时O,E,M是三点共线,
∴直线AD与平面α的距离=EF=OEsin∠EOF=$\frac{\sqrt{2}+1}{2}$a×$\frac{\sqrt{2}}{2}$=$\frac{2+\sqrt{2}}{4}$a.
故答案为:$\frac{2+\sqrt{2}}{4}$a.
点评 本题考查了线面面面垂直的判定与性质定理、球的性质、正四面体的性质、直角三角形的边角关系,考查了空间想象能力、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com