| A. | $\frac{25}{16}$ | B. | 1 | C. | $\frac{25}{48}$ | D. | $\frac{25}{64}$ |
分析 利用同角三角函数的基本关系求得tanα的值,再利用二倍角的正弦公式、同角三角函数的基本关系求得要求式子的值.
解答 解:∵4sinα-3cosα=0,∴tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$,
则$\frac{1}{{{{cos}^2}α+2sin2α}}$=$\frac{{sin}^{2}α{+cos}^{2}α}{{cos}^{2}α+4sinαcosα}$=$\frac{{tan}^{2}α+1}{1+4tanα}$=$\frac{25}{64}$,
故选:D.
点评 本题主要考查同角三角函数的基本关系、二倍角的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1) | B. | (1)(2) | C. | (2)(3) | D. | (2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com