精英家教网 > 高中数学 > 题目详情
12.函数f(x)对任何x∈R恒有f(x1•x2)=f(x1)+f(x2),已知f(8)=3,则f(2)=1.

分析 利用已知条件求出f(8)=3f(2)的值,即可求解所求表达式的值.

解答 解:f(x1•x2)=f(x1)+f(x2),
则f(8)=f(2)+f(4)=f(2)+f(2)+f(2)=3f(2)=3,
则f(2)=1,
故答案为:1

点评 本题考查抽象函数的应用,函数的值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{{x}^{2}}{2}$-alnx(a>0)在[1,2]上为单调函数,则a的取值范围为(  )
A.(-∞,1]B.(-∞,1)∪(4,+∞)C.(0,1)∪(4,+∞)D.(0,1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数a,b,c,d满足|b-a+4|+(c+d2-3lnd)2=0,则(b-d)2+(a-c)2的最小值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4,求四棱锥F-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知A=$\frac{π}{6}$,a=1,b=$\sqrt{3}$,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.经过点A(-1,4),且斜率为-1的直线方程是(  )
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=Asin(ωx+φ)+k(A>0,ω>0,0<φ<π)的图象向右平移$\frac{2π}{3}$个单位,所得曲线的一部分如图所示,则f(x)的解析式为(  )
A.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x-$\frac{21π}{22}$)+1B.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x+$\frac{21π}{22}$)+$\frac{1}{2}$
C.f(x)=2sin($\frac{11}{12}$x+$\frac{21π}{22}$)-$\frac{1}{2}$D.f(x)=$\frac{3}{2}$sin($\frac{12}{11}$x+$\frac{5π}{22}$)+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简或计算下列各式:
(1)16${\;}^{-\frac{1}{2}}}$-(${\frac{1}{2}}$)${\;}^{-\frac{1}{2}}}$-(${\frac{27}{8}}$)${\;}^{\frac{2}{3}}}$+(${\frac{3}{5}}$)0+$\root{4}{{{{(1-\sqrt{2})}^4}}}$;
(2)(a${\;}^{\frac{2}{3}}}$b${\;}^{\frac{1}{2}}}$)×(-3a${\;}^{\frac{1}{2}}}$b${\;}^{\frac{1}{3}}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}}$b${\;}^{\frac{5}{6}}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若4sinα-3cosα=0,则$\frac{1}{{{{cos}^2}α+2sin2α}}$的值为(  )
A.$\frac{25}{16}$B.1C.$\frac{25}{48}$D.$\frac{25}{64}$

查看答案和解析>>

同步练习册答案