分析 由正弦定理可知:$\frac{a}{sinA}=\frac{b}{sinB}$,解得:sinB=$\sqrt{3}$•sin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,由bsinA<a<b,因此这样的三角形有两个,即可求得B=$\frac{π}{3}$或B=$\frac{2π}{3}$.
解答 解:由正弦定理可知:$\frac{a}{sinA}=\frac{b}{sinB}$,
∴$\frac{1}{sin\frac{π}{6}}$=$\frac{\sqrt{3}}{sinB}$,解得:sinB=$\sqrt{3}$•sin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,
由bsinA=$\frac{\sqrt{3}}{2}$,
∴bsinA<a<b,
∴三角形有两个解,
∴B=$\frac{π}{3}$或B=$\frac{2π}{3}$,
B的值为$\frac{π}{3}$或$\frac{2π}{3}$.
点评 本题考查正弦定理的应用,考查三角形解得个数的判断,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $2\sqrt{6}$ | C. | $\sqrt{5}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com