精英家教网 > 高中数学 > 题目详情
20.如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4,求四棱锥F-ABCD的体积.

分析 (1)方法一:推导出四边形EFBC是平行四边形,从而HG∥CD,由此能证明GH∥平面CDE.
方法二:连接EA,推导出GH∥CD,由此能证明GH∥平面CDE.
(2)推导出FA⊥平面ABCD,BD⊥CD.由此能求出四棱锥F-ABCD的体积VF-ABCD

解答 证明:(1)方法一:∵EF∥AD,AD∥BC,∴EF∥BC.
又EF=AD=BC,∴四边形EFBC是平行四边形,…(3分)
∴H为FC的中点.又∵G是FD的中点,∴HG∥CD.
∵HG?平面CDE,CD?平面CDE,
∴GH∥平面CDE.…(6分)
方法二 连接EA,∵ADEF是正方形,
∴G是AE的中点.
∴在△EAB中,GH∥AB.…(3分)
又∵AB∥CD,∴GH∥CD.
∵HG?平面CDE,CD?平面CDE,
∴GH∥平面CDE.…(6分)
解:(2)∵平面ADEF⊥平面ABCD,交线为AD,
且FA⊥AD,∴FA⊥平面ABCD.…(9分)
∵AD=BC=6,∴FA=AD=6.
又∵CD=2,DB=4,CD2+DB2=BC2,∴BD⊥CD.
∵S?ABCD=CD•BD=8,
∴VF-ABCD=$\frac{1}{3}$S?ABCD•FA=$\frac{1}{3}×$8×6=16.…(12分)

点评 本题考查线面平行的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知下列命题:
①在△ABC中,若sin2A=sin2B,则△ABC一定是等腰三角形;
②已知α是锐角,且$cos(α+\frac{π}{4})=\frac{3}{5}$,则$sinα=\frac{{\sqrt{2}}}{10}$;
③将函数$y=sin(2x+\frac{π}{3})$图象上的所有点向左平移$\frac{π}{12}$个单位,则得到的函数图象关于y对称;
④若$sinx=-\frac{4}{5}$,$x∈(-\frac{π}{2},0)$,则$tan2x=\frac{24}{7}$.
其中所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC中,sinA+cosA=$\frac{7}{13}$,则cosA等于(  )
A.$\frac{12}{13}$B.$\frac{5}{13}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则关于x的方程$\overrightarrow{a}$x2+$\overrightarrow{b}$x+$\overrightarrow{c}$=0的解的情况是(  )
A.至少有一个实数解B.至多只有一个实数解
C.至多有两个实数解D.可能有无数个实数解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且点($\sqrt{3}$,$\frac{1}{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.
(i)求证$\frac{|OQ|}{|OP|}$=2;
(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xlnx.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在点(1,0)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)对任何x∈R恒有f(x1•x2)=f(x1)+f(x2),已知f(8)=3,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则由另一人投掷,先投掷人的获胜概率是$\frac{12}{17}$(写出计算过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设数列{an}使得a1=0,且对任意的n∈N*,均有|an+1-an|=n,则a3所有可能的取值构成的集合为{-3,-1,1,3};a64的最大值为2016.

查看答案和解析>>

同步练习册答案