精英家教网 > 高中数学 > 题目详情
11.已知△ABC中,sinA+cosA=$\frac{7}{13}$,则cosA等于(  )
A.$\frac{12}{13}$B.$\frac{5}{13}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

分析 由条件利用同角三角函数的基本关系,求得cosA的值.

解答 解:△ABC中,∵sinA+cosA=$\frac{7}{13}$,∴sinAcosA=-$\frac{60}{169}$,
则cosA<0,解得cosA=-$\frac{5}{13}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.直线y=a分别与曲线y=2x+5,y=x+lnx交于A,B两点,则|AB|的最小值为(  )
A.3B.4C.$\frac{{3\sqrt{2}}}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{{x}^{2}}{2}$-alnx(a>0)在[1,2]上为单调函数,则a的取值范围为(  )
A.(-∞,1]B.(-∞,1)∪(4,+∞)C.(0,1)∪(4,+∞)D.(0,1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的首项a1=1且an=-$\frac{1}{2}$an-1(n≥2),则a4等于(  )
A.-1B.$\frac{1}{2}$C.$\frac{17}{24}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下列条件,写出数列的前4项,并归纳猜想它的通项公式(不需证明).
(1)a1=0,an+1=$\frac{1}{2-{a}_{n}}$; 
(2)对一切的n∈N*,an>0,且2$\sqrt{{S}_{n}}$=an+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于回归方程$\widehat{y}$=4.75x+257,当x=28时,y的估计值为(  )
A.390B.400C.420D.440

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数a,b,c,d满足|b-a+4|+(c+d2-3lnd)2=0,则(b-d)2+(a-c)2的最小值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4,求四棱锥F-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简或计算下列各式:
(1)16${\;}^{-\frac{1}{2}}}$-(${\frac{1}{2}}$)${\;}^{-\frac{1}{2}}}$-(${\frac{27}{8}}$)${\;}^{\frac{2}{3}}}$+(${\frac{3}{5}}$)0+$\root{4}{{{{(1-\sqrt{2})}^4}}}$;
(2)(a${\;}^{\frac{2}{3}}}$b${\;}^{\frac{1}{2}}}$)×(-3a${\;}^{\frac{1}{2}}}$b${\;}^{\frac{1}{3}}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}}$b${\;}^{\frac{5}{6}}}$).

查看答案和解析>>

同步练习册答案