【题目】已知集合
,
,分别从
,
中各取2个不同的数,能组成不同的能被3整除的四位偶数的个数是________(用数字作答).
科目:高中数学 来源: 题型:
【题目】某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装。
![]()
其中每一级过滤都由核心部件滤芯来实现。在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个
元,二级滤芯每个
元.若客户在使用过程中单独购买滤芯,则一级滤芯每个
元,二级滤芯每个
元。现需决策安装净水系统的同时购滤芯的数量,为此参考了根据
套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图是根据
个一级过滤器更换的滤芯个数制成的柱状图,表是根据
个二级过滤器更换的滤芯个数制成的频数分布表.
![]()
二级滤芯更换频数分布表
二级滤芯更换的个数 |
|
|
频数 |
|
|
以
个一级过滤器更换滤芯的频率代替
个一级过滤器更换滤芯发生的概率,以
个二级过滤器更换滤芯的频率代替
个二级过滤器更换滤芯发生的概率.
(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为
的概率;
(2)记
表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求
的分布列及数学期望;
(3)记
,
分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若
,且
,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定
,
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆C满足:圆心在
轴上,且与圆
相外切.设圆C与
轴的交点为M,N,若圆心C在
轴上运动时,在
轴正半轴上总存在定点
,使得
为定值,则点
的纵坐标为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是( )
![]()
A.第一场得分的中位数为
B.第二场得分的平均数为![]()
C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义域为R的周期函数,最小正周期为2,且
f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在
中,
,点
为
的中点,点
为线段
垂直平分线上的一点,且
,固定边
,在平面
内移动顶点
,使得
的内切圆始终与
切于线段
的中点,且
、
在直线
的同侧,在移动过程中,当
取得最小值时,
的面积为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),等腰梯形
,
,
,
,
、
分别是
的两个三等分点.若把等腰梯形沿虚线
、
折起,使得点
和点
重合,记为点
,如图(2).
![]()
(1)求证:平面
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x-1,
(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若函数
在区间
上的值域为
,则称区间
是函数
的“完美区间”,另外,定义区间
的“复区间长度”为
,已知函数
,则( )
A.
是
的一个“完美区间”
B.
是
的一个“完美区间”
C.
的所有“完美区间”的“复区间长度”的和为![]()
D.
的所有“完美区间”的“复区间长度”的和为![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com