精英家教网 > 高中数学 > 题目详情
在三角形ABC中,若其三内角度数成等差,其对应三边长成等比,则此三角形为
等边
等边
三角形.(要求精确作答)
分析:由已知及三角形的内角和可得,B=60°,A+C=120°,b2=ac,由正弦定理可得,sinAsinC=
3
4
即sinAsin(120°-A)=
3
4

z整理可得,sin(2A-30°)=1,结合三角形的内角范围及,B=60°可求A,C
解答:解:由题意可得,不妨设A+C=2B,且ac=b2
由三角形的内角和可得,B=60°,A+C=120°
由正弦定理可得,sin2B=sinAsinC
sinAsinC=
3
4

∵sinAsin(120°-A)=sinA(sin120°cosA-sinAcos120°)
=
3
 
2
sin AcosA+
1
2
sin2A
=
3
4
sin2A-
1
4
cos2A+
1
4

1
2
sin(2A-30°)=
1
2

∴sin(2A-30°)=1
∵0°<A<120°∴2A-30°=90°
∴A=60°,B=60°,C=60°即△ABC为等边三角形
故答案为:等边
点评:本题主要考查了三角形的内角和定理及正弦定理的应用,二倍角公式及和差角公式等综合应用,解题的关键是熟练应用三角公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,若bcosC=(2a-c)cosB.
(1)求角B的大小;  
(2)若b=
7
,a+c=4,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若c=2,b=3,∠A=30°,则三角形的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若a、b、c成等比数列,且c=
3
2
a
,则2cosB=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)在三角形ABC中,若角A、B、C所对的三边a、b、c成等差数列,则下列结论中正确的是
①③④
①③④

①b2≥ac;  ②
1
a
+
1
c
2
b
;   ③b2
a2+c2
2
;   ④tan2
B
2
≤tan
A
2
tan
C
2

查看答案和解析>>

同步练习册答案