精英家教网 > 高中数学 > 题目详情
8.计算$cos({π+\frac{π}{3}})cos({2π+\frac{π}{3}})cos({3π+\frac{π}{3}})…cos({100π+\frac{π}{3}})$得(  )
A.$\frac{1}{{{2^{100}}}}$B.$-\frac{1}{{{2^{100}}}}$C.$\frac{1}{{{2^{50}}}}$D.$-\frac{1}{{{2^{50}}}}$

分析 利用诱导公式化简所求,进而计算得解.

解答 解:$cos({π+\frac{π}{3}})cos({2π+\frac{π}{3}})cos({3π+\frac{π}{3}})…cos({100π+\frac{π}{3}})$
=[(-$\frac{1}{2}$)×$\frac{1}{2}$]50
=$\frac{1}{{2}^{100}}$.
故选:A.

点评 本题主要考查了诱导公式在三角函数化简求值中的应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.8B.$6\sqrt{2}$C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1的底面是边长为2的等边三角形,AA1⊥底面ABC,点E,F分别是棱CC1,BB1上的点,且EC=B1F=2FB.
(1)证明:平面AEF⊥平面ACC1A1
(2)若AA1=3,求点E到平面ACF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,∠BCF=∠CEF=90°.AD=$\sqrt{3}$,EF=2
(1)求证:AE∥平面DCF;
(2)当AB的长为何值时,二面角A-EF-C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$与x=1时都取得极值
(1)求函数y=f(x)在点M(-1,f(-1))处的切线方程
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=sin3x,若y=f(x+t)是偶函数,则t的一个可能值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=ex-ax2+(a-e)x有三个不同的零点,则实数a的取值范围是(  )
A.(0,+∞)B.(0,e)C.[1,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边形翻转90°角,再焊接成水箱,则水箱的最大容积为128000cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx
(1)求f(x)的极值
(2)当${x_1},x{\;}_2∈(\frac{1}{e},1)$且x1<1-x2时,求证:lnx1+lnx2<4ln(x1+x2

查看答案和解析>>

同步练习册答案