【题目】已知椭圆
的离心率为
,
分别为
的上、下顶点且
为
外的动点,且
到
上点的最近距离为1.
![]()
(1)求椭圆
的标准方程;
(2)当
时,设直线
分别与椭圆
交于
两点,若
的面积是
的面积的
倍,求
的最大值.
【答案】(1)
(2)![]()
【解析】
试题(1)求椭圆标准方程,关键是列出两个独立条件,解对应方程组即可,本题关键是转化条件:
到
上点的最近距离为
,再结合离心率可得
,
(2)求最值问题,首先将研究对象转化为一元函数:
,再将直线方程与椭圆方程联立,解出对应点坐标,
,
,代入化简得
,最后根据导数或基本不等式求最值
试题解析:(1)由于
到椭圆上点的最近距离
,∴
,
又
,解得
,
所以椭圆方程为![]()
(2)解法一:
,
直线
方程为:
,联立
,得
,
所以
到
的距离
,
直线
方程为:
,联立
,得
,
所以
,所以
,
所以
,
所以
,
令
,则
,
当且仅当
,即
时,取“
”,所以
的最大值为![]()
解法二:直线
方程为
,联立
,得
,
直线
方程为:
,联立
,得
,
![]()
,
令
,则
,
当且仅当
,即
时,取“
”,
所以
的最大值为![]()
科目:高中数学 来源: 题型:
【题目】某班级体育课进行一次篮球定点投篮测试,规定每人最多投3次,每次投篮的结果相互独立.在
处每投进一球得3分,在
处每投进一球得2分,否则得0分.将学生得分逐次累加并用
表示,如果
的值不低于3分就判定为通过测试,立即停止投篮,否则应继续投篮,直到投完三次为止.现有两种投篮方案:方案1:先在
处投一球,以后都在
处投;方案2:都在
处投篮.已知甲同学在
处投篮的命中率为
,在
处投篮的命中率为
.
(1)若甲同学选择方案1,求他测试结束后所得总分
的分布列和数学期望
;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABED中,AB//DE,AB
BE,点C在AB上,且AB
CD,AC=BC=CD=2,现将△ACD沿CD折起,使点A到达点P的位置,且PE
.
![]()
(1)求证:平面PBC
平面DEBC;
(2)求三棱锥P-EBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
![]()
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记
表示2台机器三年内共需更换的易损零件数,
表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求
的分布列;
(Ⅱ)若要求
,确定
的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在
与
之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(a,
).
(1)若
,且
在
内有且只有一个零点,求a的值;
(2)若
,且
有三个不同零点,问是否存在实数a使得这三个零点成等差数列?若存在,求出a的值,若不存在,请说明理由;
(3)若
,
,试讨论是否存在
,使得
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,过点
作倾斜角为
的直线
,以原点
为极点,
轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
,将曲线
上各点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线
,直线
与曲线
交于不同的两点
.
(1)求直线
的参数方程和曲线
的普通方程;
(2)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在梯形ABCD中,AB//CD,AB=3,CD=6,过A,B分别作CD的垂线,垂足分别为E,F,已知DE=1,AE=3,将梯形ABCD沿AE,BF同侧折起,使得平面ADE⊥平面ABFE,平面ADE∥平面BCF,得到图2.
![]()
(1)证明:BE//平面ACD;
(2)求三棱锥C﹣AED的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com