| A. | (e,+∞) | B. | (-∞,e) | C. | (0,$\frac{1}{e}$) | D. | (1,+∞) |
分析 设切点为(m,mlnm),求出导数,求得切线的斜率,由两点的斜率公式可得$\frac{1}{a}$=$\frac{lnm}{m}$,设g(m)=$\frac{lnm}{m}$
,求出导数和单调区间,可得最大值,由题意可得0<$\frac{1}{a}$<$\frac{1}{e}$,解不等式即可得到所求范围.
解答 解:设切点为(m,mlnm),f(x)=xlnx的导数为f′(x)=1+lnx,
可得切线的斜率为1+lnm,
由切线经过点P(a,a),可得1+lnm=$\frac{mlnm-a}{m-a}$,
化简可得$\frac{1}{a}$=$\frac{lnm}{m}$,(*),
由题意可得方程(*)有两解,
设g(m)=$\frac{lnm}{m}$,可得g′(m)=$\frac{1-lnm}{{m}^{2}}$,
当m>e时,g′(m)<0,g(m)递增;
当0<m<e时,g′(m)>0,g(m)递减.
可得g(m)在m=e处取得最大值$\frac{1}{e}$,
即有0<$\frac{1}{a}$<$\frac{1}{e}$,解得a>e.
故选:A.
点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查函数方程的转化思想,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 在(1,3)上是增函数 | B. | 在(1,3)上是减函数 | C. | 最小值为1 | D. | 最大值为0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x=\frac{π}{2}$ | B. | $x=-\frac{3π}{10}$ | C. | $x=-\frac{7π}{10}$ | D. | $x=\frac{2π}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (0,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 简单随机抽样法,分层抽样 | B. | 分层抽样法,简单随机抽样法 | ||
| C. | 分层抽样法,系统抽样法 | D. | 系统抽样法,分层抽样法 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com