分析 作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.
解答
解:先作出不等式$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\end{array}\right.$对应的区域,
若z=2x+y的最大值为8,则2x+y=8,
直线y=a(x-3)过定点(3,0),
则直线2x+y=8与x-y=3相交于A,
$\left\{\begin{array}{l}{x=1}\\{2x+y=8}\end{array}\right.$得A(1,6),
同时A也在直线y=a(x-3)上,
即a(1-3)=6,
得a=-3,
故答案为:-3.
点评 本题主要考查线性规划的应用,根据目标函数的最大值,作出目标函数,求出目标函数和条件对应直线的交点坐标是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
| 女性用户 | 男性用户 | 合计 | |
| “认可”手机 | 140 | 180 | 320 |
| “不认可”手机 | 60 | 120 | 180 |
| 合计 | 200 | 300 | 500 |
| P(K2≧k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com