精英家教网 > 高中数学 > 题目详情
14.已知集合A={y|y=x2-2x+2},B={(x,y)|y=x2-2x+2},则下列各式中正确的个数是(  )
(1)A=B;(2)A?B;(3)A∈B;(4)A?B;(5)B∈A.
A.0B.1C.2D.3

分析 先化简集合A,B,再确定A,B的关系即可.

解答 解:集合A={y|y=x2-2x+2}=[1,+∞)表示数集,B={(x,y)|y=x2-2x+2}表示点集,
根据集合与集合之间的关系可得(1),(2),(3),(4),(5)不正确,
故选:A.

点评 本题考查函数的值域,考查集合的关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=lg(x+k),若其反函数f-1(x)的图象经过点(1,4),则实数k=(  )
A.1B.4C.6D.9999

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点M的直角坐标是(3,$\sqrt{3}$),则点M的极坐标可能为(  )
A.(2$\sqrt{3}$,$\frac{5π}{6}$)B.(2$\sqrt{3}$,$\frac{π}{6}$)C.(2$\sqrt{3}$,-$\frac{π}{6}$)D.(2$\sqrt{3}$,-$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=xex-ae2x(a∈R)
(I)当a≥$\frac{1}{e}$时,求证:f(x)≤0.
(II)若函数f(x)有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.{an}中,Sn=3n2+6n,{bn}满足bn=($\frac{1}{2}$)n-1,{cn}满足cn=$\frac{1}{6}$anbn
(1)求{an};
(2)求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=|x|-ax-1仅有一个负零点,则a的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲乙两地相距600千米,一辆货车从甲地匀速行驶到与乙地,规定速度不得超过100千米/小时,已知货车每小时的运输成本(单位:元)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为0.02,固定部分为128元.
(Ⅰ)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
(Ⅱ)为了使全程运输成本最小,货车应以多大的速度匀速行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=a(x-x1)(x-x2)(x-x3)(其中x1>x2>x3,a>0),g(x)=4x+sin(3x+1).若函数f(x)的两个极值点为α、β(β<α),设λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{x}_{2}+{x}_{3}}{2}$,则(  )
A.g(β)<g(μ)<g(α)<g(λ)B.g(μ)<g(β)<g(λ)<g(α)C.g(α)<g(λ)<g(μ)<g(β)D.g(β)<g(μ)<g(λ)<g(α)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mex-x-2.(其中e为自然对数的底数).
(Ⅰ)若曲线y=f(x)过点P(0,1),求曲线f(x)在点P(0,1)处的切线方程;
(Ⅱ)若f(x)>0在R上恒成立,求m的取值范围;
(Ⅲ)若f(x)的两个零点为x1,x2,且x1<x2,求$y=({e^{x_2}}-{e^{x_1}})(\frac{1}{{{e^{x_2}}+{e^{x_1}}}}-m)$的值域.

查看答案和解析>>

同步练习册答案