精英家教网 > 高中数学 > 题目详情
19.函数f(x)=|x|-ax-1仅有一个负零点,则a的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

分析 转化函数的零点为方程的根,利用函数的图象结合函数的性质,推出结果即可.

解答 解:函数f(x)=|x|-ax-1仅有一个负零点,就是方程|x|=ax+1仅有一个负根,即函数y=|x|与y=ax+1只有一个x<0时的交点.
如图:
由图象可知a≥1时,函数f(x)=|x|-ax-1仅有一个负零点,
故选:D.

点评 本题主要考查了函数的图象和图象变化及数形结合思想,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga(a-ax)(a>0且a≠1).
(1)求该函数的定义域和值域;
(2)判断该函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t为参数),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线$\left\{\begin{array}{l}{x=3+\frac{2\sqrt{5}}{5}t}\\{y=-2+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知直三棱柱ABC-A1B1C1的侧面ACC1A1是正方形,AC=BC,点O是侧面ACC1A1的中心,∠ACB=$\frac{π}{2}$,M在棱BC上,且MC=2BM=2.
(1)证明BC⊥AC1
(2)求OM的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={y|y=x2-2x+2},B={(x,y)|y=x2-2x+2},则下列各式中正确的个数是(  )
(1)A=B;(2)A?B;(3)A∈B;(4)A?B;(5)B∈A.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.阅读下面材料:
根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ   ①
sin(α-β)=sinαcosβ-cosαsinβ   ②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  ③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
(Ⅰ)类比上述推理方法,根据两角和与差的余弦公式,证明:
cosA-cosB=2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.;
(Ⅱ)在△ABC中,求T=sinA+sinB+sinC+sin$\frac{π}{3}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A(-1,0),B(1,0),圆C:x2-2kx+y2+2y-3k2+15=0.
(Ⅰ)若过B点至少能作一条直线与圆C相切,求k的取值范围.
(Ⅱ)当k=$\frac{\sqrt{21}}{2}$时,圆C上存在两点P1,P2满足∠APiB=90°(i=1,2),求|P1P2|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-2x+mlnx+1,其中m为常数.
(1)若m≥$\frac{1}{2}$,证明:函数f(x)在定义域上是增函数;
(2)若函数f(x)有唯一极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知偶函数f(x)=x2+bx+c的图象过点(2,5),设g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若当x=-1时,函数g(x)取得极值,确定g(x)的单调区间.

查看答案和解析>>

同步练习册答案