精英家教网 > 高中数学 > 题目详情
10.已知函数y=sinx+acosx的图象关于x=$\frac{π}{3}$对称,则函数y=asinx+cosx的图象的一条对称轴是(  )
A.x=$\frac{5π}{6}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{3}$D.x=$\frac{π}{6}$

分析 函数y=sinx+acosx变为y=$\sqrt{1+{a}^{2}}$sin(x+φ),tanφ=a又图象关于x=$\frac{π}{3}$对称,$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈z,可求得φ=kπ+$\frac{π}{6}$,由此可求得a=tanφ=tan(kπ+$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,将其代入函数y=asinx+cosx化简后求对称轴即可.

解答 解:y=sinx+acosx变为y=$\sqrt{1+{a}^{2}}$sin(x+φ),(令tanφ=a)
又∵图象关于x=$\frac{π}{3}$对称,
∴$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈z,
可求得φ=kπ+$\frac{π}{6}$,
由此可求得a=tanφ=tan(kπ+$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,
∴函数y=$\frac{\sqrt{3}}{3}$sinx+cosx=$\frac{2\sqrt{3}}{3}$sin(x+θ),(tanθ=$\sqrt{3}$)
其对称轴方程是x+θ=kπ+$\frac{π}{2}$,k∈z,
即x=kπ+$\frac{π}{2}$-θ
又tanθ=$\sqrt{3}$,故θ=k1π+$\frac{π}{3}$,k1∈z
故函数y=asinx+cosx的图象的对称轴方程为x=(k-k1)π+$\frac{π}{2}$-$\frac{π}{3}$=(k-k1)π+$\frac{π}{6}$,k-k1∈z,
当k-k1=0时,对称轴方程为x=$\frac{π}{6}$,
故选:D.

点评 本题考查三角恒等变形以及正弦类函数的对称性质,是三角函数中综合性比较强的题目,比较全面地考查了三角函数的图象与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.给定命题p:x>4,q:|x-1|>2,则¬p是¬q的必要不充分条件(备注:从充要,充分不必要,必要不充分中选择其一作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设定义在[-2,2]上的偶函数f(x)在区间[-2,0]上单调递减,若f(1-m)<f(m),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知动圆P(P为圆心)经过点N(${\sqrt{3}$,0),并且与M:(x+$\sqrt{3}}$)2+y2=16相切.
(Ⅰ)求点P的轨迹E的方程;
(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且$\overrightarrow{AC}$=$\frac{3}{5}$$\overrightarrow{AD}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∩Q=(  )
A.{3,5}B.{2,4}C.{1,2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2+x-2=0},B={x|mx+1=0}且A∪B=A,则m的值为0或-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{x-1}$+1.
(1)证明:函数f(x)在(1,+∞)上递减;
(2)记函数g(x)=f(x+1)-1,判断函数g(x)的奇偶性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,已知$\vec m$=(sin(x+$\frac{π}{4}$),cosx),$\vec n$=(cos(x+$\frac{π}{4}$),cosx),f(x)=$\vec m$•$\vec n$.
(1)试求f(x)的最小正周期和单调递减区间;
(2)已知a,b,c分别为△ABC三个内角A,B,C的对边,若f($\frac{A}{2}$)=1,a=2,试求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=(2-i)(1+2i)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案