精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|x2+x-2=0},B={x|mx+1=0}且A∪B=A,则m的值为0或-1或$\frac{1}{2}$.

分析 根据题意,解方程x2+x-2=0可得集合A={1,-2},进而分析可得B⊆A,则对B分3种情况讨论:①、B=∅,②、B={1},③、B={-2}.分别求出每种情况中m的值,综合可得答案.

解答 解:根据题意,集合A={x|x2+x-2=0}={1,-2},
若A∪B=A,则B⊆A,分3种情况讨论:
①、B=∅,即方程mx+1=0无解,分析可得m=0,
②、B={1}.即方程mx+1=0的解为x=1,
则有m+1=0,解可得m=-1;
③、B={-2}.即方程mx+1=0的解为x=-2,
则有(-2)×m+1=0,解可得m=$\frac{1}{2}$;
综合可得:m的值为0或-1或$\frac{1}{2}$;
故答案为:0或-1或$\frac{1}{2}$.

点评 本题考查集合的包含关系的应用,关键是理解集合子集的意义,注意不要遗漏B可能为空集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知双曲线的渐近线的方程为y=±$\sqrt{2}$x,并经过点P(2,$\sqrt{2}$).
(1)求双曲线的标准方程;
(2)经过双曲线的右焦点F2且倾斜角为30°的直线l交双曲线于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合U={x|x>0},∁UA={x|0<x<3},那么集合A=(  )
A.{x|x>3}B.{x|x≥3}C.{x|x<0或x>3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中,正确的是(  )
A.命题“?x∈R,x2-x≤0”的否定是“$?{x_0}∈R,x_0^2-{x_0}≥0$”.
B.命题“p∧q为真”是命题“p∨q为真”的必要不充分条件.
C.“若am2≤bm2,则a≤b”的否命题为真.
D.若实数x,y∈[-1,1],则满足x2+y2≥1的概率为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=sinx+acosx的图象关于x=$\frac{π}{3}$对称,则函数y=asinx+cosx的图象的一条对称轴是(  )
A.x=$\frac{5π}{6}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{3}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$(x∈R)
(1)当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,求函数f(x)取得最大值和最小值时x的值;
(2)设锐角△ABC的内角A、B、C的对应边分别是a,b,c,且a=1,c∈N*,若向量$\overrightarrow{{n}_{1}}$=(1,sinA)与向量$\overrightarrow{{n}_{2}}$=(2,sinB)平行,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2cos2$\frac{x}{2}$-2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-1,x∈R.
(I)求使得取f(x)得最大值的x的取值集合;
(II)若g(x)=x+f(x),求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+cos2x.
(1)试求f(x)的最小正周期和单调递减区间;
(2)已知a,b,c分别为△ABC三个内角A,B,C的对边,若f($\frac{A}{2}$)=1,a=2,试求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.O为坐标原点,F为抛物线C:y=$\frac{1}{4}$x2的焦点,P为C上一点,若|PF|=3,则△POF的面积为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案