精英家教网 > 高中数学 > 题目详情
5.O为坐标原点,F为抛物线C:y=$\frac{1}{4}$x2的焦点,P为C上一点,若|PF|=3,则△POF的面积为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.1

分析 根据抛物线方程求得抛物线的准线方程与焦点坐标,利用|PF|=4,求得P点的纵坐标,代入抛物线方程求得横坐标,代入三角形面积公式计算即可得到.

解答 解:由抛物线方程得准线方程为:y=-1,焦点F(0,1),
又P为C上一点,|PF|=3,
可得yP=2,
代入抛物线方程得:|xP|=2$\sqrt{2}$,
∴S△POF=$\frac{1}{2}$|OF|•|xP|=$\sqrt{2}$.
故选:B.

点评 本题考查了抛物线的定义及几何性质,熟练掌握抛物线上的点所满足的条件是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2+x-2=0},B={x|mx+1=0}且A∪B=A,则m的值为0或-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-y+2≥0}\\{2x+y-3≤0}\end{array}\right.$,则2x-y的最小值为(  )
A.-2B.-$\frac{5}{3}$C.-$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知直线l1:kx+y=0和直线l2:kx+y+b=0(b>0),射线OC的一个法向量为$\overrightarrow{n_3}$=(-k,1),点O为坐标原点,且k≥0,直线l1和l2之间的距离为2,点A、B分别是直线l1、l2上的动点,P(4,2),PM⊥l1于点M,PN⊥OC于点N;
(1)若k=1,求|OM|+|ON|的值;
(2)若|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=8,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值;
(3)若k=0,AB⊥l2,且Q(-4,-4),试求|PA|+|AB|+|BQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=(2-i)(1+2i)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如下样本数据
x34567
y4a+b-4-0.50.5-2
得到的回归直线方程为$\hat y=bx+a$.若样本中心为(5,0.9),则x每减少1个单位,y就(  )
A.增加1.4个单位B.减少1.4个单位C.增加1.2个单位D.减少1.2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,直角梯形OABC中,AB∥OC,|AB|=1,|OC|=|BC|=2,直线l:x=t截此梯形所得位于l左方图形面积为S,则函数S=f(t)的图象大致为图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列选项中,说法正确的是(  )
A.命题“?x0∈R,${x_0}^2-{x_0}≤0$”的否定为“?x∈R,x2-x>0”
B.命题“在△ABC中,A>30°,则$sinA>\frac{1}{2}$”的逆否命题为真命题
C.若非零向量$\overrightarrow a$、$\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$共线
D.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设全集U=R,A={x∈R|x<-1或x≥3},B={x∈R|x>2},求:
(1)∁UA;
(2)A∪(∁UB).

查看答案和解析>>

同步练习册答案