精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$(x∈R)
(1)当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,求函数f(x)取得最大值和最小值时x的值;
(2)设锐角△ABC的内角A、B、C的对应边分别是a,b,c,且a=1,c∈N*,若向量$\overrightarrow{{n}_{1}}$=(1,sinA)与向量$\overrightarrow{{n}_{2}}$=(2,sinB)平行,求c的值.

分析 (1)函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)-1,当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],进而得到函数f(x)取得最大值和最小值时x的值;
(2)向量$\overrightarrow{{n}_{1}}$=(1,sinA)与向量$\overrightarrow{{n}_{2}}$=(2,sinB)平行,即sinB-2sinA=0.由正弦定理得b=2a,再由余弦定理可得c的值.

解答 解:(1)函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-1=sin(2x-$\frac{π}{6}$)-1,
∴当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴2x-$\frac{π}{6}$=-$\frac{π}{3}$即x=-$\frac{π}{12}$时,f(x)最小,最小值是-$\frac{2+\sqrt{3}}{2}$,
2x-$\frac{π}{6}$=$\frac{π}{2}$即x=$\frac{π}{3}$时,f(x)最大,最大值是0.
(2)∵向量$\overrightarrow{{n}_{1}}$=(1,sinA)与向量$\overrightarrow{{n}_{2}}$=(2,sinB)平行,
∴sinB-2sinA=0.
由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$,得 b=2a,
∵a=1故b=2,由余弦定理得c2=a2+b2-2abcosC=5-4cosC∈(1,5),
又由c∈N*,故c=2.

点评 本题考查的知识点是正弦定理,余弦定理,三角函数的最值,向量平行,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.当a=3时,如图的程序框图输出的结果是(  )
A.9B.3C.10D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{(1-2a)x+5,(x≤12)}\\{{a}^{x-13},(x>12)}\end{array}\right.$,若数列{an}满足an=f(n)(n∈N*),且对任意的两个正整数m,n(m≠n)都有(m-n)(am-an)<0,则实数a的取值范围是(  )
A.($\frac{1}{2}$,$\frac{2}{3}$]B.($\frac{1}{2}$,$\frac{3}{4}$)C.($\frac{3}{4}$,1)D.($\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从集合{0.3,0.5,3,4,5,6}中任取3个不同的元素,分别记为x,y,z,则lgx•lgy•lgz<0的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2+x-2=0},B={x|mx+1=0}且A∪B=A,则m的值为0或-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点(1,0)作互相垂直的两条直线l1,l2,l1与曲线C交于A,B两点l2与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果a>b>0,那么下列不等式成立的是(  )
A.-a>-bB.a+c>b+cC.$\frac{1}{a}>\frac{1}{b}$D.(-a)2>(-b)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知动点P(x,y)在椭圆$\frac{x^2}{25}$+$\frac{y^2}{16}$=1上,过坐标原点的直线BC与椭圆相交,交点为B,C,点Q是三角形PBC的重心,若点A的坐标为(3,0),|${\overrightarrow{AM}}$|=1,$\overrightarrow{QM}$•$\overrightarrow{AM}$=0,则|${\overrightarrow{QM}}$|的最小值是$\frac{{\sqrt{7}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如下样本数据
x34567
y4a+b-4-0.50.5-2
得到的回归直线方程为$\hat y=bx+a$.若样本中心为(5,0.9),则x每减少1个单位,y就(  )
A.增加1.4个单位B.减少1.4个单位C.增加1.2个单位D.减少1.2个单位

查看答案和解析>>

同步练习册答案