精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{(1-2a)x+5,(x≤12)}\\{{a}^{x-13},(x>12)}\end{array}\right.$,若数列{an}满足an=f(n)(n∈N*),且对任意的两个正整数m,n(m≠n)都有(m-n)(am-an)<0,则实数a的取值范围是(  )
A.($\frac{1}{2}$,$\frac{2}{3}$]B.($\frac{1}{2}$,$\frac{3}{4}$)C.($\frac{3}{4}$,1)D.($\frac{1}{2}$,$\frac{2}{3}$)

分析 由题意可得数列{an}是递减数列,根据函数得单调性可得$\left\{\begin{array}{l}{1-2a<0}\\{0<a<1}\\{12(1-2a)+5≥\frac{1}{a}}\end{array}\right.$,解得即可.

解答 解:∵对任意的两个正整数m,n(m≠n)都有(m-n)(am-an)<0,
∴数列{an}是递减数列,
又∵f(x)=$\left\{\begin{array}{l}{(1-2a)x+5,(x≤12)}\\{{a}^{x-13},(x>12)}\end{array}\right.$,an=f(n)(n∈N*),
∴$\left\{\begin{array}{l}{1-2a<0}\\{0<a<1}\\{12(1-2a)+5≥1}\end{array}\right.$,
解得$\frac{1}{2}$<a≤$\frac{2}{3}$
故实数a的取值范围是($\frac{1}{2}$,$\frac{2}{3}$]
故选A.

点评 本题考查的知识点是分段函数,其中根据分段函数中自变量n∈N*时,对应数列为递减数列,得到函数在两个段上均为减函数,从而构造出关于变量a的不等式是解答本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.变量x,y满足约束条件$\left\{\begin{array}{l}{x+4y-13≥0}\\{2y-x+1≥0}\\{x+y-4≤0}\end{array}\right.$,且有无穷多个点(x,y)使目标函数z=x+my取得最小值,则m=(  )
A.-2B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=log${\;}_{\frac{1}{2}}}$(2x2-3x+1)的单调增区间为(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}中,a1=$\frac{1}{8}$,q=2,则a4与a8的等比中项是(  )
A.±4B.4C.±$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合U={x|x>0},∁UA={x|0<x<3},那么集合A=(  )
A.{x|x>3}B.{x|x≥3}C.{x|x<0或x>3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.中秋节吃月饼是我国的传统习俗,设一盘中盛有7块月饼,其中五仁月饼2块,莲蓉月饼3块,豆沙月饼2块,这三种月饼的形状大小完全相同,从中任取3块.
(Ⅰ)求这三种月饼各取到1块的概率;
(Ⅱ)设X表示取到的豆沙月饼的个数,求X的分布列,数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中,正确的是(  )
A.命题“?x∈R,x2-x≤0”的否定是“$?{x_0}∈R,x_0^2-{x_0}≥0$”.
B.命题“p∧q为真”是命题“p∨q为真”的必要不充分条件.
C.“若am2≤bm2,则a≤b”的否命题为真.
D.若实数x,y∈[-1,1],则满足x2+y2≥1的概率为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$(x∈R)
(1)当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,求函数f(x)取得最大值和最小值时x的值;
(2)设锐角△ABC的内角A、B、C的对应边分别是a,b,c,且a=1,c∈N*,若向量$\overrightarrow{{n}_{1}}$=(1,sinA)与向量$\overrightarrow{{n}_{2}}$=(2,sinB)平行,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin2x+$\sqrt{3}$(1-2sin2x).
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)当x∈[-$\frac{π}{6}$,$\frac{π}{6}$]时,求f(x)的值域.

查看答案和解析>>

同步练习册答案