精英家教网 > 高中数学 > 题目详情
1.将甲、乙、丙、丁四名大学生分配到三个不同的学校实习,每个学校至少分配一人,若甲、乙不能去同一个学校,则不同的分配方案共有(  )
A.36种B.30种C.24种D.20种

分析 根据题意,用间接法分析:先求出将四名大学生分配到三个不同的学校,每个学校至少分到一名大学生的分配方法数目,再计算甲乙在一个学校的分配方法数目,然后用总的种数减去甲乙在一个学校的种数,即可得到答案.

解答 解:根据题意,先将4个大学生分成3组,有C42=6种分组方法,再将分好的3组全排列,分配到3个学校,有A33=6种情况,
计算将四名大学生分配到三个不同的学校,每个学校至少分到一名老师有C42•A33=36种分配方案,
若甲乙分配到同一个学校,在3个学校中选出1个,安排甲乙2人,有C31=3种情况,将剩余2人全排列,安排到其余2个学校,有A22=2种情况,
则甲乙分配到同一个学校的情况有3×2=6种分配方案;
则甲、乙不能去同一个学校的分配方案有36-6=30种;
故选:B.

点评 本题考查排列、组合的应用,直接分析涉及比较复杂的分类讨论,可以用间接法分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设直l1,l2分别是函数f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x>1}\end{array}\right.$图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于A,B,则△PAB的面积的取值范围是(  )
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=cosxcos(x-$\frac{π}{6}$)+$\sqrt{3}$sin2x-$\frac{3\sqrt{3}}{4}$.
(1)求f(x)的最小正周期T;
(2)设g(x)=af(x)+b,若g(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域为[0,3],求实数a,b的值;
(3)若f(x)+1+(-1)n•m>0对任意的x∈[-$\frac{π}{4}$,$\frac{π}{4}$]和n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程和相关系数r,分别得到以下四个结论:
①y=2.35x-6.42,r=-0.93            ②y=-3.47x+5.65,r=-0.95
③y=5.43x+8.49,r=0.98            ④y=-4.32x-4.58,r=0.89
其中,一定不正确的结论序号是(  )
A.②③B.①④C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知纯虚数z满足$\frac{1+2\overline{z}}{z}$=-2+i(其中i是虚数单位),则z=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{a}{cosA}=\frac{\sqrt{3}b}{sinB}$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2$\sqrt{3}$,B=$\frac{π}{4}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某高校为调查1000名学生每周的自习时间(单位:小时),从中随机抽查了100名学生每周的自习时间,制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,估计这1000名学生中每周的自习时间不少于22.5小时的人数是700.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某单位在岗职工共有624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间(1,3)上具有单调性,且f(1)=-f(3)=-f(5),则ω=$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案