精英家教网 > 高中数学 > 题目详情
16.已知集合A={0,1,2},则A的子集的个数为8.

分析 由集合A中的元素有3个,把n=3代入集合的子集的公式2n中,即可计算出集合A子集的个数.

解答 解:由集合A中的元素有0,1,2共3个,代入公式得:23=8,
则集合A的子集有:{0,1,2},{0},{1},{2},{0,1},{1,2},{0,2},∅共8个.
故答案为:8.

点评 解得本题的关键是掌握当集合中元素有n个时,真子集的个数为2n-1.同时注意子集与真子集的区别:子集包含本身,而真子集不包含本身.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若Sn=12-22+32-42…(-1)n-1•n2,则(n-6)•S2n+1的最小值为-90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式:$\frac{{x}^{2}-5x+6}{7-x}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.三角形的三个顶点坐标分别为A(4,1),B(7,5),C(-4,7),求角A的平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若正项数列{an}的前n项和为Sn,首项a1=1,点P($\sqrt{{S}_{n}}$,Sn+1)(n∈N*)在曲线y=(x+1)2上.
(1)求数列{an}的通项公式an
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,Tn表示数列{bn}的前n项和,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为(  )
A.$\frac{\sqrt{2}+1}{2}$B.$\sqrt{2}$+1C.$\frac{\sqrt{5}-1}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设(1-2x)3=a3x3+a2x2+a1x+a0,则a0-a1+a2-a3=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等比数列{an}的前n项和为Sn,a2=$\frac{1}{4}$,且S1,S2,S3+$\frac{1}{8}$成等差数列;公差不为0的等差数列{bn}的前n项和Tn满足$\frac{{T}_{n}}{n}$=c•bn+1(其中c为常数),且b2=24.
(1)求数列{an}、{bn}的通顶公式;
(2)记数列{$\frac{1}{{T}_{n}}$}的前n项和为Q,比较Q与$\frac{{S}_{n}}{2}$的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x、y满足约束条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=2x+4y的最小值是-6.

查看答案和解析>>

同步练习册答案