【题目】如图,在四棱锥中,四边形ABCD是矩形,平面平面ABCD,,E是SB的中点,M是CD上任意一点.
(1)求证:;
(2)若,,平面SAD,求直线BM与平面SAB所成角的正弦值.
【答案】(1)证明见解析(2).
【解析】
(1)取的中点,连接,证明平面,来证明;(2)先根据平面得到为线段的中点,再证得平面,所以为直线与平面所成的角,即可求解,也可建立空间直角坐标系,利用向量法进行求解.
(1)取的中点,连接,
又是的中点,所以,
因为四边形是矩形,所以,则,所以四点共面,平面,
因为,平面平面,平面平面,
所以平面,
又平面,所以,所以,
因为是的中点,所以,
又,所以平面,所以;
(2)解法一:
因为平面平面,平面平面,
所以.
又,所以四边形为平行四边形,
所以,所以为的中点,
由(1)知,平面,
又平面,所以,
又,所以平面.
又,所以平面,
所以为直线与平面所成的角,
在中,易得,
所以,即直线与平面所成角的正弦值为.
解法二:
因为平面平面,平面平面,
所以,
又,所以四边形为平行四边形,
所以,所以为的中点,
因为,所以,
过点作平面的垂线,作为轴,以所在的直线为轴,所在的直线为轴,建立如图所示的空间直角坐标系,
则,
,
设平面的法向量为,
则,即,得,
令,则,所以为平面的一个法向量,
设直线与平面所成的角为,
则,
即直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知F(0,1)为平面上一点,H为直线l:y=﹣1上任意一点,过点H作直线l的垂线m,设线段FH的中垂线与直线m交于点P,记点P的轨迹为Γ.
(1)求轨迹Γ的方程;
(2)过点F作互相垂直的直线AB与CD,其中直线AB与轨迹Γ交于点AB,直线CD与轨迹Γ交于点CD,设点M,N分别是AB和CD的中点.
①问直线MN是否恒过定点,如果经过定点,求出该定点,否则说明理由;
②求△FMN的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,底面是等腰梯形,,顶点在底面内的射影恰为点.
(1)求证:平面;
(2)若直线与底面所成的角为,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来电子商务蓬勃发展,同时也极大地促进了快递行业的发展,为了更好地服务客户,某快递公司使用客户评价系统对快递服务人员的服务进行评价,每月根据客户评价评选出“快递之星”.已知“快递小哥”小张在每个月被评选为“快递之星”的概率都是,则小张在第一季度的3个月中有2个月都被评为“快递之星”的概率为_______;设小张在上半年的6个月中被评为“快递之星”的次数为随机变量X,则随机变量X的方差______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆:,点,,点在圆上,.
(1)求圆的方程;
(2)直线与圆交于,两点(点在轴上方),点是抛物线上的动点,点为的外心,求线段长度的最大值,并求出当线段长度最大时,外接圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为筛查在人群中传染的某种病毒,现有两种检测方法:
(1)抗体检测法:每个个体独立检测,每一次检测成本为80元,每个个体收取检测费为100元.
(2)核酸检测法:先合并个体,其操作方法是:当个体不超过10个时,把所有个体合并在一起进行检测.
当个体超过10个时,每10个个体为一组进行检测.若该组检测结果为阴性(正常),则只需检测一次;若该组检测结果为阳性(不正常),则需再对每个个体按核酸检测法重新独立检测,共需检测k+1次(k为该组个体数,1≤k≤10,k∈N*).每一次检测成本为160元.假设在接受检测的个体中,每个个体的检测结果是阳性还是阴性相互独立,且每个个体是阳性结果的概率均为p(0<p<1).
(Ⅰ)现有100个个体采取抗体检测法,求其中恰有一个检测出为阳性的概率;
(Ⅱ)因大多数人群筛查出现阳性的概率很低,且政府就核酸检测法给子检测机构一定的补贴,故检测机构推出组团选择核酸检测优惠政策如下:无论是检测一次还是k+1次,每组所有个体共收费700元(少于10个个体的组收费金额不变).已知某企业现有员工107人,准备进行全员检测,拟准备9000元检测费,由于时间和设备条件的限制,采用核酸检测法合并个体的组数不得高于参加采用抗体检测法人数,请设计一个合理的的检测安排方案;
(Ⅲ)设,现有n(n∈N*且2≤n≤10)个个体,若出于成本考虑,仅采用一种检测方法,试问检测机构应采用哪种检测方法?(ln3≈1.099,ln4≈1.386,ln5≈1.609,ln6≈1.792)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com