精英家教网 > 高中数学 > 题目详情
(本小题8分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直. EF//AC,AB=,CE=EF=1,.
(1)求证:AF//平面BDE;
(2)求异面直线AB与DE所成角的余弦值.
(1)略
(2)
(1)证明:是正方形,且AB=AO=1,又//,EF=1,
EFAO为平行四边形,则//,而
AF//面BDE ………………………………………………(3分)
(2)解:是正方形,//
为异面直线AB与DE所成的角或其补角 …………………………(2分)
,又面ABCD面ACEF,且面ABCD面ACEF=AC
BD面ACEF,又BDOE.
而由EC=1,OC=OA=1,
OE=1,又OD=1,则ED=
又CD=,CE="1,"
异面直线AB与DE所成的角的余弦值为 ……………………………………(3分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,正方形和矩形所在平面相互垂直,的中点.
(I)求证:
(Ⅱ)若直线与平面成45o角,
求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,已知△是正三角形,平面的中点,在棱上,且
(1)求证:平面
(2)求平面与平面所成的锐二面角的余弦值;
(3)若的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,三棱锥ABPC中,APPCACBCMAB中点,DPB中点,且△PMB为正三角形。
(Ⅰ)求证:DM//平面APC
(Ⅱ)求证:BC⊥平面APC
(Ⅲ)若BC=4,AB=20,求三棱锥DBCM的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC—A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA。
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为,并求此时二面角A—PC—B的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥的四个顶点均在半径为的球面上,且满足,则三棱锥的侧面积的最大值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为正三角形,平面ABC,AD//BE,且BE=AB+2AD,P是EC的中点。
求证:(1)PD//平面ABC;
(2)EC平面PBD。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体上任意选择4个顶点,它们可能是如下几何体的4个顶点,请写出所有符合题意的几何体的序号                 .
①矩形     ②不是矩形的平行四边形
③有三个面为等腰直角三角形,另一个面为等边三角形的四面体
④每个面都是等边三角形的四面体
⑤每个面都是直角三角形的四面体

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果直线lm与平面满足,,那么必有
A.B.
C.D.

查看答案和解析>>

同步练习册答案