精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC—A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA。
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为,并求此时二面角A—PC—B的余弦值。
(I)证明略
(II)二面角A—PC—B的余弦值是
(方法一)
(I)连接B1P,因为在直三棱柱ABC—A1B1C1中,P为A1C1的中点,
AB=BC,所以B1P⊥面A1C。
所以B1P⊥AP。
又因为当k=1时,
AB=BC=PA=PC,

∴AP⊥PC。
∴AP⊥平面B1PC,
∴PA⊥B1C。
(II)取线段AC中点M,线段BC中点N,
连接MN、MC1、NC1
则MN//AB,∵AB⊥平面B1C,∴MN⊥平面B1C,
是直线PA与平面BB1C1C所成的角,

设AB=a,

时,直线PA与平面BB1C1C所成的角的正弦值为
此时,过点M作MH,垂足为H,连接BH,

由三垂线定理得BH⊥PC,
所以是二面角A—PC—B的平面角。
设AB=2,则BC=2,PA=-4,
在直角三角形中AA1P中

连接MP,在直角三角形中

又由,在直角三角形中BMH中,
解得
在直角三角形BMH中

所以二面角A—PC—B的余弦值是
(方法二)
以点B为坐标原点,分别以直线BA、BC、BB1为x轴、y轴建立空间直角坐标系Oxyz,
(I)设AB=2,则AB=BC=PA=2
根据题意得:
所以

(II)设AB=2,则
根据题意:A(2,0,0),C(0,2,0)
又因为
所以

所以由题意得


时,直线PA与平面BB1C1C所成的角的正弦值为

的法向量
设平面BPC的一个法向量为

,得

所以此时二面角A—PC—B的余弦值是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题8分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直. EF//AC,AB=,CE=EF=1,.
(1)求证:AF//平面BDE;
(2)求异面直线AB与DE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四面体ABCD中,O、E分别是BD、BC的中点,

(I)求证:平面BCD;
(II)求点E到平面ACD的距离 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F
(1)、证明:PA∥平面DEB;
(2)、证明:PB平面EFD;
(3)、设PD=1,求DF的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分6分)
(如图)在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在正三棱柱ABC—A1B1C1中,点D是棱AB的中点,BC=1,AA1=
(1)求证:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知三棱锥PABC中,PA⊥平面ABC
ABACPAACABNAB上一点,
AB=4ANMS分别为PBBC的中点.
(I)证明:CMSN
(II)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点,
(I)       求证:AC⊥BC1;(II)求证:AC 1//平面CDB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(1)在正方形中,E、F分别是边的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使三点重合于G, 下面结论成立的是(    )
A.B.
C.D.
     

查看答案和解析>>

同步练习册答案