精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F
(1)、证明:PA∥平面DEB;
(2)、证明:PB平面EFD;
(3)、设PD=1,求DF的长。
(1)证明略
(2)证明略
(3) 
(1)连结AC交BD于O,由正方形ABCD得,O是AC的中点,又E是PC中点,∴EO∥PA,又PA平面DEB,OE平面DEB,∴PA∥平面DEB。
(2)侧棱PD底面ABCD,∴ PD BC,底面ABCD是正方形∴CDBC,又PD∩CD=D,
∴BC平面PCD,DE平面PCD,∴BCDE,又由PD=DC,E是PC的中点得,DEPC,而PC∩BC=C,∴DE平面PCB,则DEPB,又EFPB,DE∩EF=E,所以PB平面EFD。
(3)由题意得DC=1,在正方形ABCD中,,由侧棱PD底面ABCD得PDBD,由PB平面EFD得PB平面DF。则,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥中,,底面是菱形,且的中点.
(Ⅰ)证明:平面
(Ⅱ)侧棱上是否存在点,使得平面?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分8分)
在长方体中,底面是边长为2的正方形,
(Ⅰ)指出二面角的平面角,并求出它的正切值;
(Ⅱ)求所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC—A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA。
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为,并求此时二面角A—PC—B的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体上任意选择4个顶点,它们可能是如下几何体的4个顶点,请写出所有符合题意的几何体的序号                 .
①矩形     ②不是矩形的平行四边形
③有三个面为等腰直角三角形,另一个面为等边三角形的四面体
④每个面都是等边三角形的四面体
⑤每个面都是直角三角形的四面体

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在北纬圈上有A、B两点,它们的经度相差,A、B两地沿纬线圈的弧长与A、B两点的球面距离的比为(  )
A.    B.   C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-ABCD中,与对角线AC异面的棱有(   )
A.12条B.6条C.4条D.2条

查看答案和解析>>

同步练习册答案