精英家教网 > 高中数学 > 题目详情
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
(Ⅰ)略
(Ⅱ)二面角B—DE—C的余弦值为
(Ⅲ)略
解:(Ⅰ)以D为坐标原点,分别以DA、DC、DP所在直线为x轴、
y轴、z轴建立空间直角坐标系,设PD=DC=2,则A(2,0,0),
P(0,0,2),E(0,1,1),B(2,2,0),

是平面BDE的一个法向量,

则由 

(Ⅱ)由(Ⅰ)知是平面BDE的一个法向量,
是平面DEC的一个法向量.
设二面角B—DE—C的平面角为,由图可知
 故二面角B—DE—C的余弦值为
(Ⅲ)∵ ∴
假设棱PB上存在点F,使PB⊥平面DEF,设

 ∴
即在棱PB上存在点F,PB,使得PB⊥平面DEF
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在底面为直角梯形的四棱锥中,平面.PA=4,AD=2,AB=,BC=6
(Ⅰ)求证:平面
(Ⅱ)求二面角D—PC—A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)下图为一简单组合体,其底面ABCD为正方形,平面,且
(1)求证:BE//平面PDA;
(2)若N为线段的中点,求证:平面
(3)若,求平面PBE与平面ABCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F
(1)、证明:PA∥平面DEB;
(2)、证明:PB平面EFD;
(3)、设PD=1,求DF的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分8分)
如图,A1A是圆柱的母线,AB是圆柱底面圆的直径, C是底面圆周上异于A,B的任意一点,A1A= AB=2.
(Ⅰ)求证: BC⊥平面A1AC;
(Ⅱ)求三棱锥A1-ABC的体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在正三棱柱ABC—A1B1C1中,点D是棱AB的中点,BC=1,AA1=
(1)求证:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.

(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)长方体                                   中,是侧棱的中点 ,                 
(1)求直线与平面所成的角的大小;
(2)求三棱锥的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是底面边长为1,高为2的正三棱柱被平面截去几何体后得到的几何体,其中为线段上异于的动点, 为线段上异于的动点,为线段上异于的动点,且,则下列结论中不正确的是(   )
A.B.是锐角三角形C.可能是棱台D.可能是棱柱

查看答案和解析>>

同步练习册答案