精英家教网 > 高中数学 > 题目详情
(本小题满分14分)下图为一简单组合体,其底面ABCD为正方形,平面,且
(1)求证:BE//平面PDA;
(2)若N为线段的中点,求证:平面
(3)若,求平面PBE与平面ABCD所成的锐二面角的大小.
(1)证明略;
(2)证明略;
(3)45°
(1)证明:∵平面平面
∴EC//平面,同理可得BC//平面----------------------------------------2分
∵EC平面EBC,BC平面EBC且 
∴平面//平面-----------------------------------------------------------------3分
又∵BE平面EBC  ∴BE//平面PDA-----------------------------------------------------4分
(2)证法1:连结AC与BD交于点F, 连结NF,
∵F为BD的中点,
,--------------------------6分


∴四边形NFCE为平行四边形-------------------------7分

,平面,
    ∴

    ∴----------------------------------------9分

证法2:如图以点D为坐标原点,以AD所在的直线为x轴建立空间直角坐标系如图示:设该简单组合体的底面边长为1,
,--------------------------------6分
,,
,
---------------------------------8分
,且
--------------------------------------------------------------------9分
(3)解法1:连结DN,由(2)知
, ∵ ∴ ∴
为平面PBE的法向量,设,则 ∴=---11分
为平面ABCD的法向量,,---------------------------------------------12分
设平面PBE与平面ABCD所成的二面角为
------------------------------------------------13分
 即平面PBE与平面ABCD所成的二面角为45°--------------------14分
解法2:延长PE与DC的延长线交于点G,连结GB,
则GB为平面PBE与ABCD的交线--------------------10分
  ∴
∴D、B、G在以C为圆心、以BC为半径的圆上,
-------------------11分
平面, 

 ∵ 

为平面PBE与平面ABCD所成的二面角的平面角----------------------------13分
中      ∵
=45°即平面PBE与平面ABCD所成的二面角为45°----------------14分

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1
(1)证明:MN∥平面PCD;
(2)证明:MC⊥BD;
(3)求二面角A—PB—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥中,,底面是菱形,且的中点.
(Ⅰ)证明:平面
(Ⅱ)侧棱上是否存在点,使得平面?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用表示);
(2)经过设计(1)的方法,计算得到当时,Vl取最大值,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分8分)
在长方体中,底面是边长为2的正方形,
(Ⅰ)指出二面角的平面角,并求出它的正切值;
(Ⅱ)求所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,空间有两个正方形ABCDADEF,M、N分别为BD、AE的中点,则以下结论中正确的是             (填写所

100080

 
有正确结论对应的序号)

MNAD;                         
MNBF的是对异面直线;
MN//平面ABF                      
MNAB的所成角为60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在北纬圈上有A、B两点,它们的经度相差,A、B两地沿纬线圈的弧长与A、B两点的球面距离的比为(  )
A.    B.   C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线和平面的一个充分条件是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案