精英家教网 > 高中数学 > 题目详情
(本小题满分8分)
在长方体中,底面是边长为2的正方形,
(Ⅰ)指出二面角的平面角,并求出它的正切值;
(Ⅱ)求所成的角.
(Ⅰ)
(Ⅱ)所成的角为
解:(Ⅰ)连接BD,交ACO,∠D1OD为二面角
D1-AC-D的平面角,
中,.             
(Ⅱ)长方体中,DD1⊥面ABCD, ∴DD1AC
又正方形ABCD中,DBAC,∴AC⊥面BDD1
ACBD1,即所成的角为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图①,正三角形边长2,边上的高,分别为中点,现将沿翻折成直二面角,如图②
(1)判断翻折后直线与面的位置关系,并说明理由
(2)求二面角的余弦值
(3)求点到面的距离

图 ①                       图 2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(8分)如图,四棱锥底面是正方形且四个顶点在球的同一个大圆(球面被过球心的平面截得的圆叫做大圆)上,点在球面上且,且已知
(1)求球的体积;
(2)设中点,求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四面体ABCD中,O、E分别是BD、BC的中点,

(I)求证:平面BCD;
(II)求点E到平面ACD的距离 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)下图为一简单组合体,其底面ABCD为正方形,平面,且
(1)求证:BE//平面PDA;
(2)若N为线段的中点,求证:平面
(3)若,求平面PBE与平面ABCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F
(1)、证明:PA∥平面DEB;
(2)、证明:PB平面EFD;
(3)、设PD=1,求DF的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在正三棱柱ABC—A1B1C1中,点D是棱AB的中点,BC=1,AA1=
(1)求证:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCDEFG分别是PAPBBC的中点.
(I)求证:EF平面PAD
(II)求平面EFG与平面ABCD所成锐二面角的大小;
(III)若M为线段AB上靠近A的一个动点,问当AM长度等于多少时,直线MF与平面EFG所成角的正弦值等于

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(1)在正方形中,E、F分别是边的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使三点重合于G, 下面结论成立的是(    )
A.B.
C.D.
     

查看答案和解析>>

同步练习册答案