【题目】已知椭圆
的离心率为
,其中左焦点为
.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程.
【答案】
(1)解:由题意知,得
,解得
.
故椭圆
的方程为:
.
(2)解:①当直线
轴时,可取
,
,
的面积为3,不符合题意.
②当直线
与
轴不垂直时,设直线
的方程为
,代入椭圆方程得:
.
显然
成立,设
,
,则
,
,
可得:
,又圆
的半径:
,
∴
的面积为:
.
解得:
.
∴
,圆的方程为
.
【解析】对于(1),给出了椭圆方程形式及两个条件,通过列出关于a,b,c的方程组求a,b,c.
对于(2)涉及到直线与椭圆相交时产生的弦长,三角形面积等问题时,将直线方程与椭圆方程联立成方程组,消去一个未知数如y,得到关于x的一元二次方程,由判别式,韦达定理,弦长公式等解决问题,本题还涉及到直线与圆相切,即圆心互直线的距离等于半径。注意要考虑直线的斜率不存在的情况。当然本题设直线方程用反演式:x=my+t,要优化些。
科目:高中数学 来源: 题型:
【题目】已知中心在原点
,焦点在
轴上的椭圆,离心率
,且椭圆过点
.
(1)求椭圆的方程;
(2)设椭圆左、右焦点分别为
,过
的直线
与椭圆交于不同的两点
,则
的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=;
②f(n)= . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了纪念“中国红军长征90周年”,增强学生对“长征精神”的深刻理解,在全校组织了一次有关“长征”的知识竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得20分,答错得0分.假设甲队中每人答对的概率均为
,乙队中3人答对的概率分别为
,
,
,且各人回答正确与否相互之间没有影响,用
表示乙队的总得分.
(1)求
的分布列和均值;
(2)求甲、乙两队总得分之和等于40分且甲队获胜的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点
处下上至
处有两种路径.一种是从
沿直线步行到
,另一种是先从
沿索道乘缆车到
,然后从
沿直线步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
,假设缆车匀速直线运动的速度为
,山路
长为1260
,经测量
,
.
![]()
(1)求索道
的长;
(2)问:乙出发多少
后,乙在缆车上与甲的距离最短?
(3)为使两位游客在
处互相等待的时间不超过
,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图. ![]()
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在梯形ABCD中,∠ADC=
,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,点E在BP上,且EB=2PE. ![]()
(1)求证:DP∥平面ACE;
(2)求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com