精英家教网 > 高中数学 > 题目详情
10.命题“?n∈N*,?x∈R,使得n2<x”的否定形式是(  )
A.?n∈N*,?x∈R,使得n2≥xB.?n∈N*,?x∈R,使n2≥x
C.?n∈N*,?x∈R,使得n2≥xD.?n∈N*,?x∈R,使得n2≥x

分析 特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可

解答 解:“?n∈N*,?x∈R,使得n2<x”的否定形式是:?n∈N*,?x∈R,使得n2≥x,
故选:D.

点评 本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则满足z-i=|3+4i|的复数z在复平面上对应点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.i为虚数单位,若($\sqrt{3}$+i)z=(1-$\sqrt{3}$i),则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算$\sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}}}}$可采用如图所示的算法,则图中①处应该填的语句是(  )
A.T=T•T$\sqrt{a}$B.T=T•TaC.T=T•aD.T=T•T$\sqrt{Ta}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知p:-2≤x≤10,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要条件,则a的取值范围是(  )
A.(0,3]B.[3,+∞)C.[9,+∞)D.[3,9]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={y|y=3x,x∈R},B={x|-1<x<1},则A∪B=(  )
A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正项等比数列{an}中,若a1,a4029是方程x2-10x+16=0的两根,则log2a2015的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c(b<c).满足ccosB+bcosC=2acosA.
(1)求角A的大小;
(2)若△ABC的周长为20,面积为10$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x.
(Ⅰ)求函数f(x)的对称轴所在的直线方程;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,ab=2$\sqrt{3}$,且a<b,求a,b的值.

查看答案和解析>>

同步练习册答案