【题目】设命题p:函数f(x)=lg(x2+ax+1)的定义域为R;命题q:函数f(x)=x2﹣2ax﹣1在(﹣∞,﹣1]上单调递减.
(1)若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围;
(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集为M;命题p为真命题时,a的取值集合为N.当M∪N=M时,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数
.若函数f(x)有两个极值点x1,x2,记过点A(x1,f(x1))和B(x2,f(x2))的直线斜率为k,若0<k≤2e,则实数m的取值范围为( )
A.
B. (e,2e] C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
为参数,
,直线
的参数方程为
为参数).
(1)若
与
相交,求实数
的取值范围;
(2)若
,设点
在曲线
上,求点
到
的距离的最大值,并求此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,
是
的中点.
![]()
(1)求证:
平面
;
(2)求证:平面
平面
.(只需在下面横线上填写给出的如下结论的序号:①
平面
,②
平面
,③
,④
,⑤
)
证明:(1)设
,连接
.因为底面
是正方形,所以
为
的中点,又
是
的中点,所以_________.因为
平面
,____________,所以
平面
.
(2)因为
平面
平面
,所以___________,因为底面
是正方形,所以_______,又因为
平面
平面
,所以_________.又
平面
,所以平面
平面
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).
(1)求选出的3名同学来自不同班级的概率;
(2)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].
![]()
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数
的解析式;
(2)把
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移
个单位长度,得到函数
的图象,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com