精英家教网 > 高中数学 > 题目详情
14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为2.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线y=kx+1与椭圆E交于A,B两点,以AB为直径的圆与y轴正半轴交于点C.是否存在实数k,使得△ABC的内切圆的圆心在y轴上?若存在,求出k的值;若不存在,请说明理由.

分析 (Ⅰ)由椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为2,求出a,b,由此能求出椭圆方程.
(Ⅱ)依题意知BC⊥AC,设A(x1,y1),B(x2,y2),C(0,y0),则kBC=$\frac{{y}_{2}-{y}_{0}}{{x}_{2}}$=1,${k}_{AC}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}}$=-1,设A(x1,y1),B(x2,y2),C(0,y0),则kBC=$\frac{{y}_{2}-{y}_{0}}{{x}_{2}}$=1,${k}_{AC}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}}$=-1,由此能求出存在满足条件的k值.

解答 解:(Ⅰ)设焦点F(c,0),∵椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,
∴$\frac{c}{a}=\frac{\sqrt{2}}{2}$,∴a2=2c2
∵过焦点且垂直于x轴的直线被椭圆E截得的线段长为2,
∴$\frac{{b}^{2}}{a}$=1,∵a2=b2+c2,∴a2=4,b2=2,
∴椭圆E的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(Ⅱ)依题意知BC⊥AC,且∠BCO=∠ACO=45°,
于是直线BC的斜率kBC=1,直线AC的斜率kAC=-1.
设A(x1,y1),B(x2,y2),C(0,y0),
则kBC=$\frac{{y}_{2}-{y}_{0}}{{x}_{2}}$=1,${k}_{AC}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}}$=-1,
设A(x1,y1),B(x2,y2),C(0,y0),
则kBC=$\frac{{y}_{2}-{y}_{0}}{{x}_{2}}$=1,${k}_{AC}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}}$=-1,
联立,得x1+x2=k(x2-x1),①
联立$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,得(1+2k2)x2+4kx-2=0,
∴${x}_{1}+{x}_{2}=-\frac{4k}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=-\frac{2}{1+2{k}^{2}}$,②
将①式平方,并②式代入,得4k2+1=2,或k2=0,
∴存在满足条件的k值,分别为k=$±\frac{1}{2}$或k=0.

点评 本题考查椭圆方程的求法,考查满足条件的直线的斜率的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求与椭圆$\frac{{x}^{2}}{121}+\frac{{y}^{2}}{146}$=1有共同焦点,且过点(0,3)的双曲线的方程,并求出该双曲线的实轴长、焦距、离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.F1,F2分别为椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{27}$=1的上、下焦点,A为椭圆上一点,且$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{1}}$),$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{2}}$)则|$\overrightarrow{OB}$|+|$\overrightarrow{OC}$|=3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆D:x2+y2=b2分别与射线y=x(x≥0)交于A、B两点,且|OA|=$\frac{2\sqrt{10}}{5}$|OB|=$\frac{2\sqrt{10}}{5}$
(I)求椭圆C的方程;
(Ⅱ)若不经过原点O且斜率为k的直线l与椭圆交于M、N两点,且S△OMN=1,证明:线段MN中点P(x0,y0)的坐标满足x${\;}_{0}^{2}$+4y${\;}_{0}^{2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点分别为F1,F2,点M是椭圆上任意一点,点A的坐标为(2,1),求|MF1|+|MA|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数m满足f(log3m)+$f({log_{\frac{1}{3}}}m)$≤2f(1),则m的取值范围是(  )
A.(0,3]B.[$\frac{1}{3}$,3]C.[$\frac{1}{3}$,3)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.倾斜角为60°的一束平行光线,将一个半径为$\sqrt{3}$的球投影在水平地面上,形成一个椭圆,若以该椭圆的中心为原点,长轴所在的直线为x轴,建立平面直角坐标系xOy.
(1)求椭圆的标准方程;
(2)若经过原点的直线交椭圆于A、B两点,且C(-4,0),求$\overrightarrow{CA}•\overrightarrow{CB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.3名离退休老党员和贫困山区的6个孩子参加“一对一结对帮扶”活动,即每名老党员只能和一个孩子结对,每个孩子最多与一名老党员结对,那么有多少种结对方法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0,则7a7+5a5+3a3+a1=(  )
A.-16B.-8C.8D.16

查看答案和解析>>

同步练习册答案