分析 求得椭圆的a=6,运用椭圆的定义可得|AF1|+|AF2|=2a=6$\sqrt{3}$,由向量的中点表示形式,可得B为AF1的中点,C为AF2的中点,运用中位线定理和椭圆定义,即可得到所求值.
解答 解:椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{27}$=1的a=3$\sqrt{3}$,
由椭圆的定义可得|AF1|+|AF2|=2a=6$\sqrt{3}$,
$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{1}}$),可得B为AF1的中点,
$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{2}}$),可得C为AF2的中点,
由中位线定理可得|OB|=$\frac{1}{2}$|AF2|,
|OC|=$\frac{1}{2}$|AF1|,
即有|$\overrightarrow{OB}$|+|$\overrightarrow{OC}$|=$\frac{1}{2}$(|AF1|+|AF2|)=a=3$\sqrt{3}$,
故答案为:3$\sqrt{3}$.
点评 本题考查椭圆的定义、方程和性质,考查向量的中点表示形式,同时考查中位线定理,运用椭圆的第一定义是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (-∞,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com