精英家教网 > 高中数学 > 题目详情
17.新车商业车险保费与购车价格有较强的线性相关关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2960),(13,3830),(17,4750),(22,5500),((25,6370)),(33,8140),((37,8950)),(45,10700),设由这8组数据得到的回归直线方程为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+1110,李先生2016年1月购买一辆价值20万元的新车.
(1)试估计李先生买车时应缴纳的保费;
(2)从2016年1月1日起,该地区纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年的出险次数01234≥5
下一年的保费倍率0.8511.251.51.752
连续两年没有出险打7折,连续三年没有出险打6折
有评估机构从以往购买了车险的车辆中随机抽取1000辆调查,得到一年中出险次数的频数公布如表(并用相应频率估计车辆在2016年度出险次数的概率):
一年中的出险次数01234≥5
频数5003801001541
根据以上信息,试估计该车辆在2017年1月续保时应缴纳的保费(精确到元),并分析车险新政是否总体上减轻了车主负担,(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

分析 (1)求出样本平均数,代入直线方程,即可求出线性回归方程;
(2)求出2017年保费的期望倍率,即可估计2017年1月应缴纳保费.

解答 解:(1)$\overline{x}=25$万元,$\overline{y}=6400$元,…(2分)
直线$\hat y=\hat bx+1110$经过样本中心$(\bar x,\;\;\bar y)$,
解得$\hat b=211.6$,…(4分)
则回归直线方程为$\hat y=211.6x+1110$,…(5分)
李先生购买20万元车时应缴纳保费211.6×20+1110=5342元.…(6分)
(2)设该车辆2017年的保费倍率为X,则X的可能取值为0.85,1,1.25,1.75,2
且X的分布列为

X0.8511.251.51.752
P0.50.380.10.0150.0040.001
…(9分)
2017年保费的期望倍率为E(X)=0.85×0.5+1×0.38+1.25×0.1+1.5×0.015+1.75×0.004+2×0.001=0.9615.…(10分)
该车辆估计2017年1月应缴纳保费为5342×0.9615≈5136.

点评 本题考查线性回归方程,考查期望的计算,考查学生分析解决问题的了,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.以下是搜集到的开封市祥符区新房屋的销售价格y(万元)和房屋的面积x(m2)的数据:
x8095100110115
y18.421.623.224.827
已知变量x和y线性相关.
(Ⅰ)求$\overline{x}$、$\overline{y}$,及线性回归方程;
(Ⅱ)据(Ⅰ)的结果估计当房屋面积为85m2时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设p:函数f(x)=2|x-a|在区间(4,+∞)上单调递增;q:loga2<1,如果“¬p”是真命题,“p或q”也是真命题,则实数a的取值范围为a>4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知不等式$\frac{a}{sinx}$+$\frac{a}{cosx}$>1对x∈[${\frac{π}{4}$,$\frac{π}{3}}$]恒成立,则a的取值范围是a>$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给定下列两个命题:
p1:?a,b∈R,a2-ab+b2<0;
p2:在三角形ABC中,A>B,则sinA>sinB.
则下列命题中的真命题为(  )
A.p1B.p1∧p2C.p1∨(¬p2D.(¬p1)∧p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解下列关于x的不等式.
(1)(x+4)(x+5)2(2-x)3<0;
(2)|4x2-10x-3|<3;
(3)$\frac{{x}^{2}-4x+1}{3{x}^{2}-7x+2}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x}{e^x}$+x2-x(其中e=2.71828…).
(1)求f(x)在(1,f(1))处的切线方程;
(2)已知函数g(x)=-aln[f(x)-x2+x]-$\frac{1}{x}$-lnx-a+1,若x≥1,则g(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数y=f(x)在x=2处取得最小值-4,且y=f(x)的图象经过原点.
(1)求f(x)的解析式;
(2)求函数y=f(x)在[-1,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.${log_2}\sqrt{2}+{log_{\frac{1}{2}}}2$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

同步练习册答案