精英家教网 > 高中数学 > 题目详情
20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=$\sqrt{3}$,且b2+c2=3+bc,则角A为60°.

分析 直接运用余弦定理,将条件代入公式求出角A的余弦值,再在三角形中求出角A即可.

解答 解:∵a=$\sqrt{3}$,且b2+c2=3+bc,
∴b2+c2=a2+bc
∴b2+c2-a2=bc
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵0°<A<180°
∴A=60°,
故答案为60°.

点评 本题主要考查了余弦定理的直接应用,余弦定理是解决有关斜三角形的重要定理,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图所示的程序框图,输出结果的值为(  )
A.-$\frac{1}{2}$B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=3|x+2|-|x-4|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)设m,n,k为正实数,且m+n+k=f(0),求证:mn+mk+nk≤$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow{a}$=(cos25°,sin25°),$\overrightarrow{b}$=(cos25°,sin155°),则$\overrightarrow{a}$•$\overrightarrow{b}$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足$\left\{\begin{array}{l}{x+3y-4≤0}\\{3x+y+4≥0}\\{x-y≤0}\end{array}\right.$,若z=$\frac{y}{x+3}$,则z的最大值和最小值为(  )
A.最大值是2,最小值是-$\frac{1}{2}$B.最大值是3,最小值是-$\frac{1}{2}$
C.最大值是2,最小值是-$\frac{1}{3}$D.最大值是3,最小值是-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=$\frac{1}{2}$x2+2xf′(2016)+2016lnx,则f′(2016)=(  )
A.2016B.-2016C.2017D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个多面体的三视图如图所示,则该多面体的表面积为(  )
A.$\frac{22}{3}$B.21C.21+$\frac{\sqrt{3}}{2}$D.21+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等腰直角三角形ABC中,∠C=90°,AC=BC=1,点M,N分别是AB,BC中点,点P是△ABC(含边界)内任意一点,则$\overrightarrow{AN}$•$\overrightarrow{MP}$的取值范围是(  )
A.[-$\frac{3}{4}$,$\frac{3}{4}$]B.[-$\frac{1}{4}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,$\frac{1}{4}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x2+a|x|+2,x∈R在区间[3,+∞)和[-2,-1]上均为增函数,则实数a的取值范围是(  )
A.[-$\frac{11}{3}$,-3]B.[-6,-4]C.[-3,-2$\sqrt{2}}$]D.[-4,-3]

查看答案和解析>>

同步练习册答案