分析 (I)f(x)=3|x+2|-|x-4|.对x分类讨论:当x<-2时;当-2≤x≤4时;当x>4时,即可得出不等式的解集.
(II)由m+n+k=f(0)=2,m,n,k为正实数,平方展开可得:m2+n2+k2+2mn+2mk+2nk=4,m2+n2+k2=4-2(mn+mk+nk),利用重要不等式的性质可得:m2+n2+k2≥mn+nk+mk,代入解出即可得出.
解答 解:(I)∵f(x)=3|x+2|-|x-4|.
当x<-2时,-3(x+2)+(x-4)>2,解得x<-6.
∴x<-6
当-2≤x≤4时,3(x+2)+(x-4)>2,解得x>0,
∴0<x≤4.
当x>4时,3(x+2)-(x-4)>2,解得x>-4,
∴x>4.
综上可得:不等式的解集是{x|x<-6,或x>0}.
证明:(II)m+n+k=f(0)=2,m,n,k为正实数,
∴(m+n+k)2=4,展开可得:m2+n2+k2+2mn+2mk+2nk=4,
∴m2+n2+k2=4-2(mn+mk+nk),
∵m2+n2≥2mn,m2+k2≥2mk,n2+k2≥2nk,
∴m2+n2+k2≥mn+nk+mk,
∴4-2(mn+mk+nk)≥mn+nk+mk,
∴mn+mk+nk$≤\frac{4}{3}$,当且仅当m=n=k=$\frac{2}{3}$时取等号.
点评 本题考查了绝对值不等式的解法、重要不等式应用、乘法公式、不等式的解法,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1} | B. | {-2,-1,0} | C. | {0,1,2} | D. | {1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com