分析 椭圆$\left\{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}\right.$ (φ为参数),利用平方关系化为普通方程,其右焦点F(4,0).可得过右焦点且与直线$\left\{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}\right.$(t为参数)平行的直线的参数方程为:$\left\{\begin{array}{l}{x=4+\frac{2}{\sqrt{5}}t}\\{y=\frac{1}{\sqrt{5}}t}\end{array}\right.$(t为参数),代入椭圆方程可得关于t的一元二次方程,利用直线被椭圆截得的弦长=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.
解答 解:椭圆$\left\{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}\right.$ (φ为参数)化为普通方程:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1,c=$\sqrt{25-9}$=4,其右焦点F(4,0).
过右焦点且与直线$\left\{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}\right.$(t为参数)平行的直线的参数方程为:$\left\{\begin{array}{l}{x=4+\frac{2}{\sqrt{5}}t}\\{y=\frac{1}{\sqrt{5}}t}\end{array}\right.$(t为参数),
代入椭圆方程可得:61t2+144$\sqrt{5}$t-405=0,
∴t1+t2=$-\frac{144\sqrt{5}}{61}$,t1t2=-$\frac{405}{61}$.
∴直线被椭圆截得的弦长=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{90\sqrt{14}}{61}$.
故答案为:$\frac{90\sqrt{14}}{61}$.
点评 本题考查了参数方程化为普通方程、直线与椭圆相交转化为一元二次方程的根与系数的关系、弦长公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{3}{4}$,$\frac{3}{4}$] | B. | [-$\frac{1}{4}$,$\frac{3}{4}$] | C. | [-$\frac{3}{4}$,$\frac{1}{4}$] | D. | [$\frac{1}{4}$,$\frac{3}{4}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com