精英家教网 > 高中数学 > 题目详情
16.正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在对角线BD1上,给出以下命题:
①当P在BD1上运动时,恒有MN∥面APC;
②若A,P,M三点共线,则$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$;
③若$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,则C1Q∥面APC;
④过点P且与直线AB1和A1C1所成的角都为60°的直线有且只有3条.
其中正确命题的个数为(  )
A.1B.2C.3D.4

分析 ①利用三角形中位线定理、正方体的性质可得MN∥AC,再利用线面平行的判定定理即可判断出正误;
②若A,P,M三点共线,由D1M∥AB,由平行线的性质可得$\frac{{D}_{1}P}{BP}=\frac{{D}_{1}M}{AB}$=$\frac{1}{2}$,即可判断出正误;
③若$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,由②可得:A,P,M三点共线,设对角线BD∩AC=O,可得四边形OQC1M是平行四边形,于是C1Q∥OM,即可判断出正误.
④连接B1C,A1C1∥AC,由正方体的性质可得△AB1C是等边三角形,则点P取点D1,则直线AD1,CD1满足条件,有且只有这两条,即可判断出正误.

解答 解:如图所示,连接MN,AC,A1C1
①当P在BD1上运动时,M,N,分别是棱D1C1,A1D1的中点,由三角形中位线定理可得MN∥A1C1,由正方体的性质可得:A1C1∥AC.
∴MN∥AC,而MN?平面APC,AC?平面APC,∴恒有MN∥面APC,正确;
②若A,P,M三点共线,由D1M∥AB,∴$\frac{{D}_{1}P}{BP}=\frac{{D}_{1}M}{AB}$=$\frac{1}{2}$,则$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,正确;
③若$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,由②可得:A,P,M三点共线,设对角线BD∩AC=O,连接OM,OQ,则四边形OQC1M是平行四边形,∴C1Q∥OM,而M点在平面APC内,∴C1Q∥平面APC相交,因此正确;
④连接B1C,A1C1∥AC,由正方体的性质可得△AB1C是等边三角形,则点P取点D1,则直线AD1,CD1满足条件,∴过点P且与直线AB1和A1C1所成的角都为60°的直线有且只有2条,因此不正确.
综上可得:只有①②③正确,即正确的个数是3.
故选:C.

点评 本题考查了空间位置关系的判定、线面面面平行的判定与性质定理、等边三角形的性质、三角形中位线定理与平行四边形的性质、正方体的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.命题“若a2<b,则-$\sqrt{b}$<a<$\sqrt{b}$”的逆否命题为(  )
A.若a2≥b,则a≥$\sqrt{b}$或a≤-$\sqrt{b}$B.若a2>b,则a>$\sqrt{b}$或a<-$\sqrt{b}$
C.若a≥$\sqrt{b}$或a≤-$\sqrt{b}$,则a2≥bD.若a>$\sqrt{b}$或a<-$\sqrt{b}$,则a2>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga(x+$\sqrt{{x}^{2}-1}$),(a>1,x≥1)
(1)求它的反函数f-1(x),并指出它的定义域;
(2)由f-1(n)<$\frac{{2}^{n}+{2}^{-n}}{2}$(n∈N*),求a的取值范围;
(3)设bn=f-1(n),设Sn=b1+b2+…+bn,求证:当a在(2)的范围内对任意自然数n都有Sn<2n$-(\frac{\sqrt{2}}{2})^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$|1-2x|+|2x+1|
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=m,且f(x)≤a+b对任意的正实数a,b恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=3|x+2|-|x-4|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)设m,n,k为正实数,且m+n+k=f(0),求证:mn+mk+nk≤$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计:当明星代言费x在什么范围内取值时,纯收益z随明星代言费z的增加而增加?(以上计算过程中的数据统一保留到小数点第2位)
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘法估计值为:$\widehat{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}•\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow{a}$=(cos25°,sin25°),$\overrightarrow{b}$=(cos25°,sin155°),则$\overrightarrow{a}$•$\overrightarrow{b}$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=$\frac{1}{2}$x2+2xf′(2016)+2016lnx,则f′(2016)=(  )
A.2016B.-2016C.2017D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an},{bn}中,an=ln$\frac{{θ}^{n}-1}{{θ}^{n}+1}$+2n,bn=ln$\frac{{θ}^{n}+1}{{θ}^{n}-1}$-n,θ为常数,若a8=20,则b8=(  )
A.-12B.-6C.12D.6

查看答案和解析>>

同步练习册答案