精英家教网 > 高中数学 > 题目详情
1.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计:当明星代言费x在什么范围内取值时,纯收益z随明星代言费z的增加而增加?(以上计算过程中的数据统一保留到小数点第2位)
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘法估计值为:$\widehat{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}•\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

分析 (1)根据表中数据,绘制散点图,根据散点图可知,y=c+dx3适合作销售额y关于明星代言费x的回归方程;
(2)令ω=x3,则y=c+dω是y关于ω的线性回归方程,根据最小二乘法求得系数,求得回归方程,求得z的函数解析式,求导,利用z′≥0,求得z的单调递增区间,即可求得纯收益z随明星代言费z的增加而增加的区间.

解答 解:(1)散点图如图:

根据散点图可知,y=c+dx3适合作销售额y关于明星代言费x的回归方程.
(2)令ω=x3,则y=c+dω是y关于ω的线性回归方程,
所以$\widehat{d}$=$\frac{\sum_{i=1}^{5}{ω}_{i}•{y}_{i}-5\overline{ω}•\overline{y}}{\sum_{i=1}^{5}({ω}_{i}-\overline{ω})^{2}}$=1.21,$\widehat{c}$=$\overline{y}$-$\overline{d}$•$\overline{ω}$=1.15,
所以y=1.15+1.21ω=1.15+1.21x3
z=0.2y-2.904x=0.2(1.15+1.21x3)-2.904x=0.242x3-2.904x+0.23,
令z'=0.726x2-2.904≥0,由x∈(0,300],解得:200≤x≤300.
估计:当明星代言费200≤x≤300百万元时,纯收益z随明星代言费x的增加而增加.

点评 本题考查独立性检验的应用,考查利用最小二乘法求回归直线方程,利用导数求函数单调性的方法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.小明和小红进行一次答题比赛,共4局,每局10分,现将小明和小红的各局得分统计如表:
小明6699
小红79610
(1)求小明和小红在本次比赛中的平均得分x1,x2及方差$s_1^2$,$s_2^2$;
(2)从小明和小红两人的4局比赛中随机各选取1局,并将小明和小红的得分分别记为a,b,求a≥b的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+m|+|x-3|,g(x)=$\sqrt{7x+14}$$+\sqrt{6-x}$.
(1)m>-3时,若不等式f(x)≥8的解集为(-∞,-3]∪[5,+∞),求实数m的值:
(2)若存在实数x0,使得g(x0)>log${\;}_{\sqrt{2}}$(3t+1)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的参数方程为:$\left\{\begin{array}{l}{x={t}^{2}}\\{y=-{t}^{2}}\end{array}\right.$(t为参数),曲线E的参数方程为:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$ (θ为参数).
(1)求曲线C和曲线E的普通方程;
(2)求曲线C和曲线E的交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在对角线BD1上,给出以下命题:
①当P在BD1上运动时,恒有MN∥面APC;
②若A,P,M三点共线,则$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$;
③若$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,则C1Q∥面APC;
④过点P且与直线AB1和A1C1所成的角都为60°的直线有且只有3条.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)是一元二次函数g(x)=2x•f(x),且g(x+1)-g(x)=2x+1•x2,求f(x)与g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.2014年3月8日,马航MH370航班客机从吉隆坡飞往北京途中失联,随后多国加入搜救行动,同时启动水下黑匣子的搜寻,主要通过水下机器人和蛙人等手段搜寻黑匣子,现有3个水下机器人A,B,C和2个蛙人a,b,各安排一次搜寻任务,搜寻时每次只能安排1个水下机器人或1个蛙人下水,其中C不能安排在第一个下水,A和a必须相邻安排,则不同的搜寻方式有(  )
A.24种B.36种C.48种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{1}{2}$x,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2016年全国“两会”于3月3日-3月16日在北京召开,参会代表积极参政议政,议大事谋良策,取得了一系列重要成果,某网站就网友对会议的了解情况随机调查了1000名网友,结果如表:
 不很了解  了解非常了解 
50岁以上  100 212 y
 50岁以下 x188  z
若从这1000名网友中随机抽取一名,抽到50名以下不很了解的概率为0.10.
(1)求x的值;
(2)若y≥193,z≥193,求“非常了解的网友中,50岁以下的人数不少于50岁以上的人数”的概率.

查看答案和解析>>

同步练习册答案