精英家教网 > 高中数学 > 题目详情
12.小明和小红进行一次答题比赛,共4局,每局10分,现将小明和小红的各局得分统计如表:
小明6699
小红79610
(1)求小明和小红在本次比赛中的平均得分x1,x2及方差$s_1^2$,$s_2^2$;
(2)从小明和小红两人的4局比赛中随机各选取1局,并将小明和小红的得分分别记为a,b,求a≥b的概率.

分析 (1)根据题意,利用定义计算平均数与方差即可;
(2)利用列举法计算基本事件数,求对应的概率即可.

解答 解:(1)根据题意,平均数x1=$\frac{6+6+9+9}{4}$=7.5,
x2=$\frac{7+9+6+10}{4}$=8;
${{s}_{1}}^{2}$=$\frac{1}{4}$×(1.52×4)=2.25,
${{s}_{2}}^{2}$=$\frac{1}{4}$×(1×2+4×2)=2.5;…(4分)
(2)记小明的4局比赛为A1,A2,A3,A4
各局的得分分别是6,6,9,9;
小红的4局比赛为B1,B2,B3,B4
各局的得分分别是7,9,6,10;
则从小明和小红的4局比赛中随机各选取1局,所有可能的结果有16种,
它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),
(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(A3,B1),(A3,B2),(A3,B3),(A3,B4),
(A4,B1),(A4,B2),(A4,B3),(A4,B4);…(8分)
其中满足条件的有:
(A1,B3),(A2,B3),(A3,B1),(A3,B2),(A3,B3),
(A4,B1),(A4,B2),(A4,B3);…(10分)
故所求的概率为$P=\frac{8}{16}=\frac{1}{2}$.…(12分)

点评 本题考查了平均数与方差的计算问题,也考查了用列举法求古典概型的概率问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则∠A的度数为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线y2=2px(p>0)的焦点为F,准线为L,A、B是抛物线上的两个动点,且满足∠AFB=$\frac{π}{3}$.设线段AB的中点M在L上的投影为N,则$\frac{|MN|}{|AB|}$的最大值是(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用1,2,3,4这四个数字能组成24个没有重复数字的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“若a2<b,则-$\sqrt{b}$<a<$\sqrt{b}$”的逆否命题为(  )
A.若a2≥b,则a≥$\sqrt{b}$或a≤-$\sqrt{b}$B.若a2>b,则a>$\sqrt{b}$或a<-$\sqrt{b}$
C.若a≥$\sqrt{b}$或a≤-$\sqrt{b}$,则a2≥bD.若a>$\sqrt{b}$或a<-$\sqrt{b}$,则a2>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax,(a∈R)
(Ⅰ)若函数f(x)在点区间[e,+∞]处上为增函数,求a的取值范围;
(Ⅱ)若函数f(x)的图象在点x=e(e为自然对数的底数)处的切线斜率为3,且k∈Z时,不等式 k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(Ⅲ)n>m≥4时,证明:(mnnm>(nmmn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{3^x},x≤0\end{array}$,则f(f($\frac{1}{8}$))=(  )
A.$\frac{1}{8}$B.$\frac{1}{16}$C.$\frac{1}{9}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将一个半径为$\sqrt{2}$的球放在一个棱长为2的无盖的正方体上面(球面与正方体上面的四条棱相切),则球心到正方体下底面的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计:当明星代言费x在什么范围内取值时,纯收益z随明星代言费z的增加而增加?(以上计算过程中的数据统一保留到小数点第2位)
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘法估计值为:$\widehat{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}•\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

同步练习册答案