精英家教网 > 高中数学 > 题目详情
2.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则∠A的度数为90°.

分析 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sinA的值进而求得A.

解答 解:∵bcosC+ccosB=asinA,
∴sinBcosC+sinCcosB=sin(B+C)=sinA=sin2A,
∵sinA≠0,
∴sinA=1,
∴由于A为三角形内角,可得A=90°,
故答案为:90°.

点评 本题主要考查了正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若x∈R,用[x]表示不超过x的最大整数,如[-1.5]=2,[5.1]=5,设{x}=x-[x],则对函数f(x)={x},下列说法正确的是①②④
①定义域是R,值域为[0,1);
②它是以1为周期的周期函数;
③若方程f(x)=kx+k有三个不同的根,则实数k的取值范围是(-$\frac{1}{3}$,-$\frac{1}{4}$]∪[$\frac{1}{4}$,$\frac{1}{3}$);
④若n≤x1≤x2<n+1(n∈Z),则f(x1)≤f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设正项等比数列{an}中,a1=3,$\frac{1}{2}{a_3}$是9a1与8a2的等差中项.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{1}{{{{log}_2}{a_n}•{{log}_3}{a_{n+1}}}}$,求数列{bn}的前n项和Tn;若对任意n∈N*都有Tn>logm2成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用数字0,1,2,3,4组成没有重复数字的五位数.
(I)能够组成多少个奇数?
(II)能够组成多少个1和3不相邻的正整数?
(III)能够组成多少个1不在万位,2不在个位的正整数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了大力弘扬中华优秀传统文化,某校购进了《三国演义》、《水浒传》、《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量ξ服从正态分布N(5,9),若p(ξ>c+2)=p(ξ<c-2),则c的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{x{+∫}_{0}^{m}3{t}^{2}dt,x≤0}\end{array}\right.$,若f(f(1))=8则(x2-$\frac{1}{x}$)m+4展开式中常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示的程序框图,若输入x=8,则输出k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.小明和小红进行一次答题比赛,共4局,每局10分,现将小明和小红的各局得分统计如表:
小明6699
小红79610
(1)求小明和小红在本次比赛中的平均得分x1,x2及方差$s_1^2$,$s_2^2$;
(2)从小明和小红两人的4局比赛中随机各选取1局,并将小明和小红的得分分别记为a,b,求a≥b的概率.

查看答案和解析>>

同步练习册答案