分析 利用分段函数的意义可得f(1),再利用微积分基本定理解得m.再利用二项式定理的通项公式即可得出.
解答 解:∵f(1)=ln1=0,
∴f(f(1))=f(0)=0+${∫}_{0}^{m}$3t2dt=${t}^{3}{|}_{0}^{m}$=m3-0,
∴m3=8,解得m=2.
$({x}^{2}-\frac{1}{x})^{6}$的展开式的通项公式:Tr+1=${∁}_{6}^{r}({x}^{2})^{6-r}$$(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x12-3r,
令12-3r=0,解得r=4.
∴(x2-$\frac{1}{x}$)m+4展开式中常数项=$(-1)^{4}{∁}_{6}^{4}$=$\frac{6×5}{2}$=15.
故答案为:15.
点评 本题考查了分段函数的性质、二项式定理及展开式的通项公式、微积分基本定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{55}$ | B. | 9 | C. | $\sqrt{91}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.28J | B. | 0.12J | C. | 0.26J | D. | 0.32J |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 某事件发生的概率为P(A)=1.1 | |
| B. | 不可能事件的概率为0,必然事件的概率为1 | |
| C. | 小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件 | |
| D. | 某事件发生的概率是随着试验次数的变化而变化的 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | -$\frac{2}{3}\sqrt{2}$ | D. | $\frac{2}{3}\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com