精英家教网 > 高中数学 > 题目详情
6.设f(x)是一元二次函数g(x)=2x•f(x),且g(x+1)-g(x)=2x+1•x2,求f(x)与g(x).

分析 设f(x)=ax2+bx+c,可得g(x)的解析式,求出g(x+1),运用恒等式可得对应项系数相等,解方程可得a,b,c,进而得到所求f(x),g(x)的解析式.

解答 解:设f(x)=ax2+bx+c,
则g(x)=2x•(ax2+bx+c),
g(x+1)-g(x)=2x+1•x2
即为2x+1•[a(x+1)2+b(x+1)+c]-2x•(ax2+bx+c)=2x+1•x2
展开可得ax2+(4a+b)x+(2a+2b+c)=2x2
可得a=2,4a+b=0,2a+2b+c=0,
解得a=2,b=-8,c=12.
则f(x)=2x2-8x+12,
g(x)=2x•(2x2-8x+12).

点评 本题考查函数的解析式的求法,注意运用待定系数法,考查解方程的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax,(a∈R)
(Ⅰ)若函数f(x)在点区间[e,+∞]处上为增函数,求a的取值范围;
(Ⅱ)若函数f(x)的图象在点x=e(e为自然对数的底数)处的切线斜率为3,且k∈Z时,不等式 k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(Ⅲ)n>m≥4时,证明:(mnnm>(nmmn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(Ⅰ)求曲线C1与曲线C2的普通方程;
(Ⅱ)若点P的坐标为(-1,3),且曲线C1与曲线C2交于B,D两点,求|PB|•|PD|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={0,1,2},B={2,3},则集合C={z|z=x-y,x∈A,y∈B}中所有元素之和为(  )
A.-9B.-8C.-7D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计:当明星代言费x在什么范围内取值时,纯收益z随明星代言费z的增加而增加?(以上计算过程中的数据统一保留到小数点第2位)
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘法估计值为:$\widehat{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}•\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\frac{1}{2}$${∫}_{1}^{e}$xlnxdx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知二次函数f(x)=$\frac{1}{4}$x2+1,过点M(a,0)作直线l1,l2与f(x)的图象相切于A,B两点,则直线AB(  )
A.过定点(0,1)B.过定点(0,2)C.过定点(a,1)D.过定点(a,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)的解集为($\frac{ln2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面PAB⊥底面ABCD,PA=2$\sqrt{2}$,PB=2.
(I)求证:AC⊥平面PBD;
(II)若∠DAB=60°,求二面角B-PD-C的余弦值.

查看答案和解析>>

同步练习册答案