精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$sin x,cos 2x),x∈R,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.
(Ⅱ)求 f(x)的单调增区间.

分析 (I)利用数量积运算性质可得函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}sinxcosx$$-\frac{1}{2}$cos2x=$sin(2x-\frac{π}{6})$.
由x∈[0,$\frac{π}{2}$],可得$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,$sin(2x-\frac{π}{6})$∈$[-\frac{1}{2},1]$.即可得出f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.
(II)由$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$,解得即可得出f(x)的单调增区间.

解答 解:(I)函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}sinxcosx$$-\frac{1}{2}$cos2x=$\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x$=$sin(2x-\frac{π}{6})$.
∵x∈[0,$\frac{π}{2}$],∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,
∴$sin(2x-\frac{π}{6})$∈$[-\frac{1}{2},1]$.
∴f(x)在[0,$\frac{π}{2}$]上的最大值和最小值分别为1,$-\frac{1}{2}$.
(II)由$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$,解得$kπ-\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$(k∈Z).
∴f(x)的单调增区间为$[kπ-\frac{π}{6},kπ+\frac{π}{3}]$(k∈Z).

点评 本题考查了向量数量积的关系、三角函数的单调性与最值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知曲线f(x)=-x3-2x2+2ax+8在(1,f(1))处的切线与直线x-3y+1=0垂直.
(Ⅰ)求f(x)解析式;
(Ⅱ)求f(x)的单调区间并画出y=f(x)的大致图象;
(Ⅲ)已知函数g(x)=f(x)+x2-2mx,若对任意x1,x2∈[1,2],总有(x1-x2)[g(x1)-g(x2)]>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设ξ~B(18,p),又E(ξ)=9,则p的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某次数学测试中,小明完成前5道题所花的时间(单位:分钟)分别为4,5,6,x,y.已知这组数据的平均数为5,方差为$\frac{4}{5}$,则|x-y|的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设直线l1:x-y+6=0和直线l2:2x-2y+3=0,则直线l1与直线l2的位置关系为:(  )
A.平行B.重合C.垂直D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A,B,C所对的边分别为a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1-cosC).
(1)判断△ABC的形状;
(2)在△ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上的P点处,设∠BDP=θ,当AD最小时,求$\frac{{|{{A}D}|}}{{|{{A}{B}}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在△ABC中,AB=4,AC=2,若O为△ABC的外心.
(Ⅰ)求$\overrightarrow{AO}$•$\overrightarrow{AC}$的值;
(Ⅱ)求$\overrightarrow{AO}$•$\overrightarrow{CB}$的值;
(Ⅲ)若平面内一点P满足($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{AB}$=($\overrightarrow{PB}$+$\overrightarrow{PC}$)•$\overrightarrow{BC}$=($\overrightarrow{PC}$+$\overrightarrow{PA}$)•$\overrightarrow{CA}$=0,
试判定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某几何体的三视图如图所示,作出该几何体直观图的简图,并求该几何体的体积.

查看答案和解析>>

同步练习册答案