精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知函数
(Ⅰ)当  时,求函数  的最小值;
(Ⅱ)当  时,讨论函数  的单调性;
(Ⅲ)求证:当 时,对任意的 ,且,有

解:(Ⅰ)显然函数的定义域为,当
∴ 当
时取得最小值,其最小值为 .----------------------------- 4分
(Ⅱ)∵,-----------5分
∴(1)当时,若为增函数;
为减函数;为增函数.
(2)当时,为增函数;
为减函数;为增函数.------- 9分
(Ⅲ)不妨设,要证明,即证明:
时,函数
考查函数-------------------------------------------------10分

上是增函数,----------------------------------------------------12分
对任意
所以命题得证----------14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)设是定义在上的函数,且对任意,当时,都有
(1)当时,比较的大小;
(2)解不等式
(3)设,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数(m为常数,且m>0)有极大值9.
(1)求m的值;
(2)若斜率为-5的直线是曲线的切线,求此直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题



(1)求解析式并判断的奇偶性;
(2)对于(1)中的函数,若时都有成立,求满足条件的实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知定义在区间上的函数为奇函数且
(1)求实数m,n的值;
(2)求证:函数上是增函数。
(3)若恒成立,求t的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)在(-1,1)上有定义,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f,试证明:
(1)f(x)为奇函数;
(2)f(x)在(-1,1)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少时,零件的实际出厂单价恰为51元;
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少?如果订购1 000个,利润又是多少?(工厂售出一个零件的利润=实际出厂单价-成本

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,yt的函数关系式为a为常数).函数图象如图所示.
根据图中提供的信息,解答下列问题:
(1)求从药物释放开始每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;

(第17题图)

 
(2)按规定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少时间,学生才能回到教室?

 

查看答案和解析>>

同步练习册答案