已知函数f(x)在(-1,1)上有定义,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f,试证明:
(1)f(x)为奇函数;
(2)f(x)在(-1,1)上单调递减.
证明:(1)由f(x)+f(y)=f,令x=y=0,得f(0)=0,
令y=-x,得f(x)+f(-x)=f=f(0)=0.
∴f(x)=-f(-x),即f(x)为奇函数.
(2)先证f(x)在(0,1)上单调递减.
令0<x1<x2<1,
则f(x2)-f(x1)=f(x2)+f(-x1)
=f,
∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,
∴>0,
又∵(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0,
∴x2-x1<1-x2x1,
∴0<<1,由题意知f<0,
即f(x2)<f(x1).
∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0,
∴f(x)在(-1,1)上为减函数.
解析
科目:高中数学 来源: 题型:解答题
若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com