分析 (I)设等差数列{an}的公差为d,等比数列{bn}的公比为q,由a1=b1=1,a2=b2,2a3-b3=1.可得1+d=q,2(1+2d)-q2=1,解出即可得出.
(II)当$\left\{\begin{array}{l}{d=0}\\{q=1}\end{array}\right.$时,cn=anbn=1,Sn=n.当$\left\{\begin{array}{l}{d=2}\\{q=3}\end{array}\right.$时,cn=anbn=(2n-1)•3n-1,利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(I)设等差数列{an}的公差为d,等比数列{bn}的公比为q:∵a1=b1=1,a2=b2,2a3-b3=1.
∴1+d=q,2(1+2d)-q2=1,解得$\left\{\begin{array}{l}{d=0}\\{q=1}\end{array}\right.$或$\left\{\begin{array}{l}{d=2}\\{q=3}\end{array}\right.$.
∴an=1,bn=1;
或an=1+2(n-1)=2n-1,bn=3n-1.
(II)当$\left\{\begin{array}{l}{d=0}\\{q=1}\end{array}\right.$时,cn=anbn=1,Sn=n.
当$\left\{\begin{array}{l}{d=2}\\{q=3}\end{array}\right.$时,cn=anbn=(2n-1)•3n-1,
∴Sn=1+3×3+5×32+…+(2n-1)•3n-1,
3Sn=3+3×32+…+(2n-3)•3n-1+(2n-1)•3n,
∴-2Sn=1+2(3+32+…+3n-1)-(2n-1)•3n=$2×\frac{{3}^{n}-1}{3-1}$-1-(2n-1)•3n=(2-2n)•3n-2,
∴Sn=(n-1)•3n+1.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 20 | C. | 25 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-2\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $4\sqrt{3}$ | D. | $6\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com