精英家教网 > 高中数学 > 题目详情
17.不等式|4x+5|>11的解集为(  )
A.(-4,+∞)B.(-1.5,+∞)或(-∞,-4)C.(1.5,+∞)D.(-4,1.5)

分析 把要求的不等式化为 4x+5>11,或4x+5<-11,由此求得x的范围.

解答 解:不等式|4x+5|>11,即 4x+5>11,或4x+5<-11,
解得x>$\frac{3}{2}$,或 x<-4,
故选:B.

点评 本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},满足a2=2,a4=4.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}{a_{n+2}}}}}\right\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=log0.5(1-x)+log0.5(x+3)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
(1)证明数列{an}是等差数列,并求其前n项和Sn
(2)设数列{bn}满足bn=$\sqrt{\frac{n}{{S}_{n}}}$,求证:b1+b2+…+bn<$\frac{2}{3}$$\sqrt{3n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求不等式|-x+6|≤3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.a是实数,函数f(x)=-x2+ax-3在区间(0,1)与(2,4)上各有一个零点,求a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{3}$x3+2x2+3x(x∈R)的图象为曲线C,问:是否存在一条直线与曲线C同时切于两点?若存在,求出符合条件的所在直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将下列各数:$\frac{2}{3}$,log53,log${\;}_{\sqrt{3}}$2,(log${\;}_{\frac{1}{8}}$$\frac{1}{27}$)-1,log${\;}_{\frac{1}{2}}$6从小到大排列为$lo{g}_{\frac{1}{2}}6$<$(lo{g}_{\frac{1}{8}}\frac{1}{27})^{-1}$<$\frac{2}{3}$<log53<log${\;}_{\sqrt{3}}$2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{a-{e}^{x}}{b+{e}^{x+1}}$是R上的奇函数,求a,b的值.

查看答案和解析>>

同步练习册答案